Tag Archives: plane geometry

Containing an Arc

This problem from Futility Closet proved quite challenging.

“University of Illinois mathematician John Wetzel called this one of his favorite problems in geometry. Call a plane arc special if it has length 1 and lies on one side of the line through its end points. Prove that any special arc can be contained in an isosceles right triangle of hypotenuse 1.”

My attempts were futile (maybe that is where the title of the website comes from). Maybe this qualifies for another Coffin Problem. But I did have one little comment about the Futility Closet solution. See Containing an Arc.

Three Coffin Problems

These are three “Coffin” Problems posed by Nakul Dawra on his Youtube site GoldPlatedGoof. (Nakul is extraordinarily entertaining and mesmerizing.) The origin of the name is explained, but basically they are problems that have easy or even trivial solutions—once you see the solution. But just contemplating the problem, they seem impossible. The idea was to kill the chances of the pupil taking an (oral) exam with these problems. I was able to solve the first two problems (after a while), but I could not figure out the third. See the Three Coffin Problems.

Four of a Kind

From Futility Closet we have another intriguing problem with what turns out to be a simple and elegant solution.

“If squares are drawn on the sides of a triangle and external to it, then the areas of the triangles formed between the squares each equal the area of the triangle itself.”

I originally assumed that the center triangle was a right triangle as suggested by the picture. But then I realized there was a solution that did not depend on that. See Four of a Kind.

Polygon Areas Problem

This is another problem from Futility Closet, though Futility Closet provides a “solution” of sorts. They provide a set of steps without explaining where they came from. So I thought I would fill in the gap. The problem is to find the area of an irregular polygon, none of whose sides cross one another, if we are given the coordinates of the vertices of the polygon.

See Polygon Areas Problem.

Nahin Triangle Problem

This article is basically a technical footnote without wider significance. At the time I had been reading with interest Paul J. Nahin’s latest book Number-Crunching (2011). Nahin presents a problem that he will solve with the Monte Carlo sampling approach.

“To start, imagine an equilateral triangle with side lengths 2. If we pick a point ‘at random’ from the interior of the triangle, what is the probability that the point is no more distant than d = √2 from each of the triangle’s three vertices? The shaded region in the figure is where all such points are located.”

Nahin provided a theoretical calculation for the answer and said that it “requires mostly only high school geometry, plus one step that I think requires a simple freshman calculus computation.” This article presents my solution without calculus. See the Nahin Triangle Problem.

Polygon Altitude Problems II

James Tanton has provided further elaborations on the polygons and the sum of perpendicular distances from interior points. Again I approached the solutions with a mix of areas and vectors. It is rather impressive to see the number of variations that can be rung on the Viviani Theorem theme. See Polygon Altitude Problems II

Polygon Altitude Problems I

I found this collection of related problems by James Tanton on Twitter. Even though all these problems do not involve perpendiculars, they have a common solution approach – a sort of theme and variations idea. In a later tweet Tanton refers to a Viviani Theorem associated with these types of problems. I did not recall that theorem explicitly or by name. I also have not looked it up yet, in order to solve these problems on my own. I am guessing there is a more classical Euclidean geometry proof, but I like my vector approach for its clarity. I also throw in a bit a calculus at the end for fun. See Polygon Altitude Problems I

Geometric Puzzle Medley

This is a collection of simple but elegant puzzles, mostly from a British high school math teacher Catriona Shearer, for which I thought I would show solutions (solutions for a number of them had not been posted yet on Twitter at the time of writing).  See the Geometric Puzzle Medley.

Apparently Catriona Shearer creates these problems herself, which shows an especially gifted talent. Ben Olin, of Math with Bad Drawings fame, had an interesting interview with Ms. Shearer. The reason for the interest in her work becomes evident the more of her geometry problems one sees. They are especially elegant and minimalist, and often have simple solutions, as exemplified by the “5 Problem” or “Shear Beauty” problem illustrated here. Words, such as “beauty” and “elegance”, are often bandied about concerning various mathematical subjects, but as with any discussion of esthetics, the efforts at explanation usually fall flat. Shearer’s problems are one of the best examples of these ideas I have ever seen. If you contemplate her problems and even solve them, you will understand the meaning of these descriptions.

One of the key aspects of mathematics is often its “hidden-ness” (some would say “opacity” or “incomprehension”). Her problems appear to have insufficient information to solve. But as you look at the usually regular figures, you see that there are inherent rigid constraints that soon yield specific information that leads to a solution. This discovery is akin to the sensation of discovering Newton’s mathematical laws underlying physical reality. It is the essence of one of the joys of mathematics.

Continue reading