# Bailing Water Problem

This is a straight-forward problem from Five Hundred Mathematical Challenges.

“A boat has sprung a leak.  Water is coming in at a uniform rate and some has already accumulated when the leak is detected.  At this point, 12 men of equal skill can pump the boat dry in 3 hours, while 5 men require 10 hours.  How many men are needed to pump it dry in 2 hours?”

See the Bailing Water Problem for solution.

This is another simple problem from Five Hundred Mathematical Challenges:

“Problem 57.  Let X be any point between B and C on the side BC of the convex quadrilateral ABCD (as in the Figure).  A line is drawn through B parallel to AX and another line is drawn through C parallel to DX.  These two lines intersect at P.  Prove that the area of the triangle APD is equal to the area of the quadrilateral ABCD.”

# Playing with Polys

Here is a fairly straight-forward problem from 500 Mathematical Challenges.

“Problem 256.  Let n be a positive integer. Show that (x – 1)2 is a factor of xn – n(x – 1) – 1.”

# Curve Making Puzzle

Here is a problem from Five Hundred Mathematical Challenges that I indeed found quite challenging.

“Problem 235. Two fixed points A and B and a moving point M are taken on the circumference of a circle. On the extension of the line segment AM a point N is taken, outside the circle, so that lengths MN = MB. Find the locus of N.

Since one of the first hurdles I faced with this problem was trying to figure out what type of shape was being generated, I thought I would omit my usual drawings illustrating the problem statement.  There turned out to be a lot of cases to consider, but the result was most satisfying.  I also included the case when N is inside the circle.  Again Visio was my main tool to handle all the examples with the concomitant requirement to prove whatever Visio suggested.

See the Curve Making Puzzle

# Lopsided Hexagon Problem

Here is another good problem from Five Hundred Mathematical Challenges:

“Problem 100.  A hexagon inscribed in a circle has three consecutive sides of length a and three consecutive sides of length b. Determine the radius of the circle.”

This problem made me think of the Putnam Octagon Problem.  Again my approach might be considered a bit pedestrian.  500 Math Challenges had a slightly slicker solution.

See the Lop-sided Hexagon Problem for solutions.

# Perpetual Meetings Problem

The following problem from Five Hundred Mathematical Challenges was a challenge indeed, even though it appeared to be a standard travel puzzle.

Problem 118. Andy leaves at noon and drives at constant speed back and forth from town A to town B. Bob also leaves at noon, driving at 40 km per hour back and forth from town B to town A on the same highway as Andy. Andy arrives at town B twenty minutes after first passing Bob, whereas Bob arrives at town A forty-five minutes after first passing Andy. At what time do Any and Bob pass each other for the nth time?”

See the Perpetual Meetings Problem for solutions.

# Amazing Triangle Problem

Here is another simply amazing problem from Five Hundred Mathematical Challenges:

Problem 154. Show that three solutions, (x1,.y1), (x2,.y2), (x3, y3), of the four solutions of the simultaneous equations
____________(x – h)² + (y – k)² = 4(h² + k²)
______________________xy = hk
are vertices of an equilateral triangle. Give a geometrical interpretation.”

Again, I don’t see how anyone could have discovered this property involving a circle, a hyperbola, and an equilateral triangle. It seems plausible when h.=.k, but it is not at all obvious for h..k. For some reason, I had difficulty getting a start on a solution, until the obvious approach dawned on me. I don’t know why it took me so long.

See the Amazing Triangle Problem.

# Magic Hexagons

This is truly an amazing result from Five Hundred Mathematical Challenges.

Problem 119. Two unequal regular hexagons ABCDEF and CGHJKL touch each other at C and are so situated that F, C, and J are collinear.

Show that

(i) the circumcircle of BCG bisects FJ (at O say);
(ii) ΔBOG is equilateral.”

I wonder how anyone ever discovered this.

See the Magic Hexagons

# Number of the Beast

If you will pardon the pun, this is a diabolical problem from the collection Five Hundred Mathematical Challenges.

Problem 5. Calculate the sum

__________

It has a non-calculus solution, but that involves a bunch of manipulations that were not that evident to me, or at least I doubt if I could have come up with them. I was able to reframe the problem using one of my favorite approaches, power series (or polynomials). The calculations are a bit hairy in any case, but I was impressed that my method worked at all.

See the Number of the Beast for solutions.