# Al the Chemist II

This is the second part of the problem from Raymond Smullyan in the “Brain Bogglers” section of the 1996 Discover magazine.

“On another occasion, Al made a mixture of water and wine. There was more water than wine—in fact, the excess of water over wine was equal to one-fourth the quantity of wine. Al then added 12 ounces of wine, at which point there was one ounce more of wine than water.

According to another version of the story, before Al added the 12 ounces of wine, he first boiled off 12 ounces of water (the net effect being that he replaced 12 ounces of water with wine), and again there was one more ounce of wine than water.

Would there be more mixture present at the end of the first version or the second?”

I found this statement a tad ambiguous with the result that I found two possible solutions: the one Smullyan gave and another, surprising one.

# Al the Chemist I

This is a relatively simple problem from the inventive Raymond Smullyan in the “Brain Bogglers” section of the 1996 Discover magazine.

“AL THE CHEMIST—not an alchemist, though his name might suggest it­—one day partially filled a container with some concoction or other. He knew the volume of fluid in the container, as well as the volume of empty space, and real­ized that two-thirds of the former was equal to four-fifths of the latter. Was the container then less than half full, more than half full, or exactly half full?”

See Al the Chemist I for solution.

# The Thoth Maneuver

This is a nice puzzle from Clifford Pickover in the 1996 Discover magazine’s Brain Bogglers.

“Thoth, ancient Egyptian god of wisdom and learning, has abducted Ahmes, a famous Egyptian scribe, in order to assess his intellectual prowess. Thoth places Ahmes before a large funnel set in the ground. It has a circular open­ing 1,000 feet in diameter, and its walls are quite slippery. If Ahmes attempts to enter the funnel, he will slip down the wall. At the bottom of the funnel is a sleep-inducing liquid that will instantly put Ahmes to sleep for eight hours if he touches it.

As shown in the illustration, there are two ankh-shaped towers. One stands on a cylindrical platform in the center of the fun­nel. The platform’s surface is at ground level. The distance from the platform’s surface to the liquid is 500 feet. The other ankh tower is on land, at the edge of the funnel.

Thoth hands Ahmes two objects: a rope 1,006.28 feet in length and the skull of a chicken. Thoth says to Ahmes, ‘If you are able to get to the central tower and touch it, we will live in harmony for the next millennium. If not, I will detain you for fur­ther testing. Please note that with each passing hour, I will decrease the rope’s length by a foot.’

How can Ahmes reach the central ankh tower and touch it? ”

See the Thoth Maneuver

# Family Values

Here is a collection of puzzles from the great logic puzzle master Raymond Smullyan in a “Brain Bogglers” column for the 1996 Discover magazine.

1. ELDON WHITE HAS FOUR DOGS. One day he put out a bowl of dog biscuits. The eldest dog came first and ate half the biscuits plus one more. Then the next dog came and ate half of what he found plus one more. Then the next one came and ate half of what she found plus one more. Then the little one came and ate half of what she found and one more, and that finished the biscuits. How many biscuits were originally in the bowl?
2. Eldon once bought a very remarkable plant, which, on the first day, increased its height by a half, on the second day by a third, on the third day by a quarter, and so on. How many days did it take to grow to 100 times its original height?
3. In addition to four dogs, Eldon has four children. The youngest, Betty, is nine years old; then there are twin boys, Arthur and Robert; and finally there’s Laura, the eldest, whose age is equal to the combined ages of Betty and Arthur. Also, the combined ages of the twins are the same as the combined ages of the youngest and the eldest. How old is each child?
4. “How about a riddle?” asked Robert. “Very well,” said Eldon. “What is it that is larger than the universe, the dead eat it, and if the living eat it, they die?”

See Family Values  for solutions.

Here is another Brain Bogglers problem from 1987 by Michael Stueben.

“A quadrilateral with sides three, two, and four units in length is inscribed in a circle of diameter five.  What’s the length of the fourth side of the quadrilateral?”

Like a number of other Brain Bogglers this problem also uses an insight that makes the solution easy.

See the Quad in Circle Problem for a solution.

# Factory Location Problem

This is a somewhat elegant problem from the 1987 Discover magazine’s Brain Bogglers by Michael Stueben:

“Each dot in the figure at left represents a factory. On which of the city’s 63 intersections should a warehouse be built to make the total distance between it and all the factors as short as possible? (A much simpler solution than counting and totaling the distances is available.)”

Note that the distance is the taxicab distance I discussed in my article South Dakota Travel Problem rather than the distance along straight lines between the warehouse and factories.

See the Factory Location Problem for solutions.

# Movie Projector Problem

Here is another Brain Bogglers problem from 1987.

“Exactly four minutes after starting to run—when the take-up reel was rotating one and a half times as fast as the projecting reel—the film broke. (The hub diameter of the smaller take-up reel is 8 cm and the hub diameter of the projecting reel is 12 cm.) How many minutes of film remain to be shown?”

This feels like another problem where there is insufficient information to solve it, and that makes it fun and challenging. In fact, I was stumped for a while until I noticed something that was the key to completing the solution.

See the Movie Projector Problem for a solution.

# 1770 Card Game Problem

This problem from the 1987 Discover magazine’s Brain Bogglers by Michael Stueben apparently traces back to 1770, though the exact reference is not given.

“Here’s an arithmetic problem taken from a textbook published in Germany in 1770. Three people are gambling. In the first game, Player A loses to each of the others as much money as each of them had when the game started. In the next game, B loses to each of the others as much money as each had when that game began. In the third game, A and B each win from C as much money as each had at the start of that game. The players now find that each has the same sum, 24 guineas. How much money did each have when play began?”

See the 1770 Card Game Problem for solutions.