Center of Square Problem

22 February 2021

Jim Stevenson

This is a simple problem from Five Hundred Mathematical Challenges ([1]):

Problem 24. Let P be the center of the square constructed on the hypotenuse $A C$ of the right-angled triangle $A B C$. Prove that $B P$ bisects $\angle A B C$.

Figure 1

References

500 Math Challenges Solution.

Problem 24. Since $\angle A P C$ and $\angle A B C$ are both right, the circle on diameter $A C$ passes through B and P. Since $A P$ and $P C$ are equal chords of this circle they subtend equal angles at the circumference, ${ }^{1}$ so $\angle A B P=\angle C B P$.
[1] Barbeau, Edward J., Murray S. Klamkin, William O. J. Moser, Five Hundred Mathematical Challenges, Spectrum Series, Mathematical Association of America, Washington D.C, 1995
© 2021 James Stevenson

[^0]
[^0]: ${ }^{1}$ JOS: This is easy enough to show. Just make two congruent triangles from the central angles for these two arcs of the circle and their equal subtending chords. Then the central angles will be equal.

