Area vs. Perimeter Puzzle

5 June 2021

Jim Stevenson

This surprising, but simple, puzzle is from the 12 April MathsMonday offering ${ }^{1}$ by MEI, an independent curriculum development body for mathematics education in the UK.

In the diagram various regular polygons, P , have been drawn whose sides are tangents to a circle, C. Show that for any regular polygon drawn in this way:
$\frac{\text { Area of } \mathrm{P}}{\text { Perimeter of } \mathrm{P}}=\frac{\text { Area of } \mathrm{C}}{\text { Circumference of } \mathrm{C}}$

Given that the polygons approximate the circle in the limit, it would not be surprising that this relationship would hold-in the limit. It is surprising that it should be true for every regular polygon that circumscribes the circle.

Solution

Let P be a regular polygon of n sides circumscribing a circle C of radius r. Let A be the area of the polygon, L the length of the perimeter of the polygon, and s the length of a side. Then $L=n s$. Consider the triangle of area T shown in Figure 1. Then

$$
T=1 / 2 r s=1 / 2 r L / n
$$

and

$$
A=n(1 / 2 r L / n)=1 / 2 r L
$$

So

$$
A / L=1 / 2 r
$$

This is a constant independent of the number of sides of the polygon.

Figure 1

Now the ratio of the area of the circle to its circumference is

$$
\pi r^{2} / 2 \pi r=r / 2
$$

and so we have the desired equivalence.
Rather amazing. Actually, the surprising thing is why I had never come across this simple fact before. Maybe it is common knowledge and I just missed it.
© 2021 James Stevenson

[^0]
[^0]: ${ }^{1} \mathrm{https}: / /$ twitter.com/Beamathsteacher/status/1381577925657571330

