This is from the UKMT Senior Challenge of 2004.

“L, M, and N are midpoints of a skeleton cube, as shown. What is the value of angle LMN?

_____A_90°_____B_105°_____C_120°_____D_135°_____E_150°”

Leave a reply

This is from the UKMT Senior Challenge of 2004.

“L, M, and N are midpoints of a skeleton cube, as shown. What is the value of angle LMN?

_____A_90°_____B_105°_____C_120°_____D_135°_____E_150°”

In my search for new problems I came across this one from Martin Gardner:

“A square formation of Army cadets, 50 feet on the side, is marching forward at a constant pace [see Figure]. The company mascot, a small terrier, starts at the center of the rear rank [position A in the illustration], trots forward in a straight line to the center of the front rank [position B], then trots back again in a straight line to the center of the rear. At the instant he returns to position A, the cadets have advanced exactly 50 feet. Assuming that the dog trots at a constant speed and loses no time in turning, how many feet does he travel?”

Gardner gives a follow-up problem that is virtually impossible:

“If you solve this problem, which calls for no more than a knowledge of elementary algebra, you may wish to tackle a much more difficult version proposed by the famous puzzlist Sam Loyd. Instead of moving forward and back through the marching cadets, the mascot trots with constant speed around the outside of the square, keeping as close as possible to the square at all times. (For the problem we assume that he trots along the perimeter of the square.) As before, the formation has marched 50 feet by the time the dog returns to point A. How long is the dog’s path?”

See the Marching Cadets and Dog Problem.

I was reading yet another book on the Scientific Revolution when I came across a discussion of the mathematical significance of the invention of perspective for painting in the 15th century Italian Renaissance. The main player in the saga was Leon Battista Alberti (1404 – 1472) and his tome *De Pictura* (*On Painting*) (1435-6), which contained the first mathematical presentation of perspective. Even though mathematics was advertised, it was not at the level of trigonometry I used in my post “The Perspective Map”, but rather entailed simple Euclidean plane geometry. So the discussion was largely historical rather than mathematical. Nevertheless, I became curious to learn how much Alberti was able to discover about perspective without a lot of math. This essay is the result.

See Alberti’s Perspective Construction

**(Update 7/29/2019) ** I got a response! Continue reading

This is problem #25 from the UKMT 2014 Senior Challenge.

“Figure 1 shows a tile in the form of a trapezium [trapezoid], where *a* = 83⅓°. Several copies of the tile placed together form a symmetrical pattern, part of which is shown in Figure 2. The outer border of the complete pattern is a regular ‘star polygon’. Figure 3 shows an example of a regular ‘star polygon’.

How many tiles are there in the complete pattern?

_____A_48_____B_54_____C_60_____D_66_____E_72”

See the Star Polygon Problem.

Here is a problem from the UKMT Senior (17-18 year-old) Mathematics Challenge for 2012:

“A semicircle of radius r is drawn with centre V and diameter UW. The line UW is then extended to the point X, such that UW and WX are of equal length. An arc of the circle with centre X and radius 4r is then drawn so that the line XY is tangent to the semicircle at Z, as shown. What, in terms of r, is the area of triangle YVW?”

See the Rising Sun

This is a fun problem from *Mathematical Quickies* (1967).

“Prove that the sum of the vectors from the center of a regular polygon of n sides to its vertices is zero.”

See the Vector Sum Problem.

This is a problem from the UKMT Senior Challenge for 2001. (It has been slightly edited to reflect the colors I added to the diagram.)

“The [arbitrary] blue triangle is drawn, and a square is drawn on each of its edges. The three green triangles are then formed by drawing their lines which join vertices of the squares and a square is now drawn on each of these three lines. The total area of the original three squares is A1, and the total area of the three new squares is A2. Given that A2 = k A1, then

_____A_ k = 1_____B_ k = 3/2_____C_ k = 2_____D_ k = 3_____E_ more information is needed.”

I solved this problem using a Polya principle to simplify the situation, but UKMT’s solution was direct (and more complicated). See the Six Squares Problem.

Catriona Shearer retweeted the following problem from Antonio Rinaldi @rinaldi6109

“My little contribution to @Cshearer41 October 7, 2018

A point D is randomly chosen inside the equilateral triangle ABC. Determine the probability that the triangle ABD is acute-angled.”

Another challenging problem from Presh Talwalkar. I certainly could not have solved it on a timed test at the age of 16.

“**One Of The Hardest GCSE Test Questions – How To Solve The Cosine Problem**

Construct a hexagon from two congruent parallelograms as shown. Given BP = BQ = 10, solve for the cosine of PBQ in terms of x.

This comes from the 2017 GCSE exam, and it confused many people. I received many requests to solve this problem, and I thank Tom, Ben, and James for suggesting it to me.”

See the Parallelogram Cosine Problem

I really was trying to stop including Catriona Shearer’s problems, since they are probably all well-known and popular by now. But this is another virtually one-step-solution problem that again seems impossible at first. Many of her problems entail more steps, but I am especially intrigued by the one-step problems.

“What’s the sum of the two marked angles?”

See Kissing Angles.