Category Archives: Puzzles and Problems

Triangle Acute-Angle Problem

Catriona Shearer retweeted the following problem from Antonio Rinaldi‏ @rinaldi6109

“My little contribution to @Cshearer41 October 7, 2018
A point D is randomly chosen inside the equilateral triangle ABC. Determine the probability that the triangle ABD is acute-angled.”

Answer.

See Triangle Acute-Angle Problem for a solution.

Parallelogram Cosine Problem

Another challenging problem from Presh Talwalkar. I certainly could not have solved it on a timed test at the age of 16.

One Of The Hardest GCSE Test Questions – How To Solve The Cosine Problem

Construct a hexagon from two congruent parallelograms as shown. Given BP = BQ = 10, solve for the cosine of PBQ in terms of x.

This comes from the 2017 GCSE exam, and it confused many people. I received many requests to solve this problem, and I thank Tom, Ben, and James for suggesting it to me.”

Answer.

See the Parallelogram Cosine Problem for solutions.

Hitting the Target

Here is a problem from the UKMT Senior (17-18 year-old) Mathematics Challenge for 2012:

“Tom and Geri have a competition. Initially, each player has one attempt at hitting a target. If one player hits the target and the other does not then the successful player wins. If both players hit the target, or if both players miss the target, then each has another attempt, with the same rules applying. If the probability of Tom hitting the target is always 4/5 and the probability of Geri hitting the target is always 2/3, what is the probability that Tom wins the competition?

______A 4/15______B 8/15______C 2/3______D 4/5______E 13/15”

Answer.

See Hitting the Target for solutions.

Kissing Angles

I really was trying to stop including Catriona Shearer’s problems, since they are probably all well-known and popular by now. But this is another virtually one-step-solution problem that again seems impossible at first. Many of her problems entail more steps, but I am especially intrigued by the one-step problems.

“What’s the sum of the two marked angles?”

Answer.

See Kissing Angles for a solution.

Ladies’ Diary Problem

An amazing publication was conceived primarily for women at the beginning of the 18th century in 1704 and was called The Ladies’ Diary or Woman’s Almanack. What made it even more remarkable was that each issue contained mathematical problems whose solutions from the readers were provided in the next issue. One particularly sharp woman was Mary Wright (Mrs. Mary Nelson). This is one of her problems:

VIII. Question 72 by Mrs. Mary Nelson
(proposed in 1719, answered in 1720)

A prize was divided by a captain among his crew in the following manner: the first took 1 pound and one hundredth part of the remainder; the second 2 pounds and one hundredth part of the remainder; the third 3 pounds and one hundredth part of the remainder; and they proceeded in this manner to the last, who took all that was left, and it was then found that the prize had by this means been equally divided amongst the crew. Now if the number of men of which the crew consisted be added to the number of pounds in each share, the square of that sum will be four times the number of pounds in the chest: How many men did the crew consist of, and what was each share?”

What makes this problem nice is that it does have a clean answer, contrary to most of the problems in The Ladies’ Diary.

Answer.

See the Ladies’ Diary Problem for solutions.

(Update 5/6/2019) Continue reading

Two Trains – London to Liverpool

This is another train puzzle from H. E. Dudeney, which is fairly straight-forward.

“I put this little question to a stationmaster, and his correct answer was so prompt that I am convinced there is no necessity to seek talented railway officials in America or elsewhere. Two trains start at the same time, one from London to Liverpool, the other from Liverpool to London. If they arrive at their destinations one hour and four hours respectively after passing one another, how much faster is one train running than the other?”

Answer.

See Two Trains – London to Liverpool for a solution.

Challenging Sum

Here is a problem from the UKMT Senior (17-18 year-old) Mathematics Challenge for 2009:

“Four positive integers a, b, c, and d are such that

abcd + abc + bcd + cda + dab + ab + bc + cd + da + ac + bd + a + b + c + d = 2009.

What is the value of a + b + c + d?

A 73_________B 75_________C 77_________D 79_________E 81”

Answer.

See the Challenging Sum for a solution.

(Update 4/17/2019) Continue reading

Two Block Incline Puzzle

Since everyone by now who has any interest has gone directly to Catriona Shearer’s Twitter account for geometric puzzles, I was not going to include any more. But this one with its one-step solution is too fine to ignore and belongs with the “5 Problem” as one of the most elegant.

“Two squares sit on the hypotenuse of a right-angled triangle. What’s the angle?”

Answer.

See the Two Block Incline Puzzle for a solution.

(Update 4/26/2019) Continue reading

Magic Parallelogram

I came across this problem in Alfred Posamentier’s book, but I remember I had seen it a couple of places before and had never thought to solve it. At first, it seems like magic.

In any convex quadrilateral (line between any two points in the quadrilateral lies entirely inside the quadrilateral) inscribe a second convex quadrilateral with its vertices on the midpoints of the sides of the first quadrilateral. Show that the inscribed quadrilateral must be a parallelogram.

See the Magic Parallelogram.

(Update 5/15/2020) Continue reading

Putnam Octagon Problem

Here is a problem from the famous (infamous?) Putnam exam, presented by Presh Talwalkar. Needless to say, I did not solve it in 30 minutes—but at least I solved it (after making a blizzard of arithmetic and trigonometric errors).

“Today’s problem is from the 1978 test, problem B1 (the easiest of the second set of problems). A convex octagon inscribed in a circle has four consecutive sides of length 3 and four consecutive sides of length 2. Find the area of the octagon.”

My solution is horribly pedestrian and fraught with numerous chances for arithmetic mistakes to derail it, which happened in spades. As I suspected, there was an elegant, “easy” solution (as demonstrated by Talwalkar)—once you thought of it! Again, this is like a Coffin Problem.

Answer.

See the Putnam Octagon Problem for solutions.