Quintic Nightmare

21 October 2019

Jim Stevenson

Here is another challenging problem from the 2004 Pi in the Sky Canadian magazine for high school students ([1]).

Problem 4. Find the real solutions of the system

$$
\begin{aligned}
& (x+y)^{5}=z, \\
& (y+z)^{5}=x, \\
& (z+x)^{5}=y .
\end{aligned}
$$

Solution

Let $f(x, y, z)=(x+y)^{5}-z$. Notice that the three equations in the problem can all be obtained from $f(x, y, z)=0$ by taking all permutations of the three variables x, y, z, where three pairs of the resulting six permuted equations are the same. Certainly $0,0,0$ would be a solution to the equations, and the property of the permutations suggests that all solutions might be of the form $x=y=z$. (We now just quote the rest of the solution from Pi in the Sky.([2]))

Indeed, if for example we assume that $x<y$, then from the last two equations we get $(y+z)^{5}<$ $(z+x)^{5}$; hence $y<x$, which is a contradiction. Similarly, assuming any of the other possibilities results in contradictions.

Taking $x=y=z$ in the first equation, we get $(2 x)^{5}=x$; hence $x=0$ or $x= \pm \frac{1}{2 \sqrt{2}}$. Therefore the solutions of the system are

$$
(0,0,0),\left(\frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right),\left(-\frac{1}{2 \sqrt{2}},-\frac{1}{2 \sqrt{2}},-\frac{1}{2 \sqrt{2}}\right)
$$

References

[1] "Math Challenges," Pi in the Sky, Issue 8, December 2004
[2] "Math Challenges," Pi in the Sky, Issue 9, December 2005

