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A Tidy Theorem 
6 February 2016 

Jim Stevenson 

This is another fairly simple puzzle from Futility Closet ([1]). 

If an equilateral triangle is inscribed in a circle, then the distance 

from any point on the circle to the triangle’s farthest vertex is equal 

to the sum of its distances to the two nearer vertices (q = p + r). 

(A corollary of Ptolemy’s theorem.) 

 

 

 

 

Proof 

First, we see that the angles bounded by the blue lines are both 60° since they span the same arc 

of the circle as the 60° angles of the equilateral triangle (Figure 1). 

Now it gets a bit messy.  Since we are interested in lengths of a triangle given an included angle, 

it seems natural to consider the Law of Cosines and see what it yields. 
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p + r – q = 0      if p – r ≠ 0 

p + r = q 

  

Figure 1    Problem Solution p ≠ r Figure 2    Problem Solution p = r 

If p = r, then the concatenated blue triangles become an isosceles triangle with vertex angle 120° 

and so the base angles are 30° each.  Therefore the angle at B is a right angle and we have 30-60 right 

triangle.  Therefore, the hypotenuse q is twice the leg r, that is q = 2r.  But r = p means q = p + r, 

again. 
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