A Tidy Theorem

6 February 2016

Jim Stevenson

This is another fairly simple puzzle from Futility Closet ([1]).
If an equilateral triangle is inscribed in a circle, then the distance from any point on the circle to the triangle's farthest vertex is equal to the sum of its distances to the two nearer vertices ($q=p+r$).
(A corollary of Ptolemy's theorem.)

Proof

First, we see that the angles bounded by the blue lines are both 60° since they span the same arc of the circle as the 60° angles of the equilateral triangle (Figure 1).

Now it gets a bit messy. Since we are interested in lengths of a triangle given an included angle, it seems natural to consider the Law of Cosines and see what it yields.

$$
\begin{gathered}
s^{2}=p^{2}+q^{2}-2 p q \cos 60^{\circ}=p^{2}+q^{2}-p q \\
s^{2}=r^{2}+q^{2}-2 r q \cos 60^{\circ}=r^{2}+q^{2}-r q \\
p^{2}-r^{2}-q(p-r)=0 \\
p+r-q=0 \quad \text { if } p-r \neq 0 \\
p+r=q
\end{gathered}
$$

Figure 1 Problem Solution $\boldsymbol{p} \neq \boldsymbol{r}$

Figure 2 Problem Solution $p=r$

If $p=r$, then the concatenated blue triangles become an isosceles triangle with vertex angle 120° and so the base angles are 30° each. Therefore the angle at B is a right angle and we have $30-60$ right triangle. Therefore, the hypotenuse q is twice the leg r, that is $q=2 r$. But $r=p$ means $q=p+r$, again.

References

[1] "A Tidy Theorem" Futility Closet, 14 March 2015 (http://www.futilitycloset.com/2015/03/14/a-tidy-theorem/, retrieved 2/5/16)
© 2019 James Stevenson

