Newton and the Declaration of Independence

One of the books that has stuck with me over the years is Carl Becker’s The Declaration of Independence (1922, reprint 1942), not only for its incredibly clear and beautiful writing but also for its emphasis on the impact of the revolution most prominently caused by Isaac Newton, which was later subsumed under the term Scientific Revolution covering the entire 17th century. A consequence of this remarkable period was the so-called Enlightenment that followed in the 18th century and became the soil from which our nation’s founding ideas and documents sprang. Both these centuries have been further optimistically called the Age of Reason.

Our current times, awash in lies, corruption, and such terms as “alternative facts”, have been characterized as an assault on the rationalism and Enlightenment that shaped our founding. Any revisiting of these origins would seem to be a valuable endeavor to see if they still have validity. What makes Becker’s essay particularly relevant to me is the current pervasiveness of the mathematical view of reality that was launched by Newton some 300 years ago. Becker shows how this new way of thinking spread far beyond the bounds of mathematics and engendered a new “natural rights” philosophy that formed the foundation for the Declaration of Independence. Essentially the idea was that if the behavior of the natural world was based on (mathematical) laws, then so must the behavior of man be based on natural laws.

See Newton and Declaration of Independence

(Updates 10/31/2019, 9/18/2020, 3/9/2024) Steven Strogatz Confirmation,  an Atlantic article, Natural Law

Continue reading

1770 Card Game Problem

This problem from the 1987 Discover magazine’s Brain Bogglers by Michael Stueben apparently traces back to 1770, though the exact reference is not given.

“Here’s an arithmetic problem taken from a textbook published in Germany in 1770. Three people are gambling. In the first game, Player A loses to each of the others as much money as each of them had when the game started. In the next game, B loses to each of the others as much money as each had when that game began. In the third game, A and B each win from C as much money as each had at the start of that game. The players now find that each has the same sum, 24 guineas. How much money did each have when play began?”

Answer.

See the 1770 Card Game Problem for solutions.

Mysterious Doppelgänger Problem

I found this problem from the Math Challenges section of the 2002 Pi in the Sky Canadian math magazine for high school students to be truly astonishing.

Problem 4. Inside of the square ABCD, take any point P. Prove that the perpendiculars from A on BP, from B on CP, from C on DP, and from D on AP are concurrent (i.e. they meet at one point).”

How could such a complicated arrangement produce such an amazing result? I didn’t know where to begin to try to prove it. My wandering path to discovery produced one of my most satisfying “aha!” moments.

See the Mysterious Doppelgänger Problem

Update (12/27/2019) I goofed.  I had plotted the original figure incorrectly. (No figure was given in the Pi in the Sky statement of the problem.) Fortunately, the original solution idea still worked.

Pairwise Products

This 2005 four-star problem from Colin Hughes at Maths Challenge is also a bit challenging.

Problem
For any set of real numbers, R = {x, y, z}, let sum of pairwise products,
________________S = xy + xz + yz.
Given that x + y + z = 1, prove that S ≤ 1/3.”

Again, I took a different approach from Maths Challenge, whose solution began with an unexplained premise.

See the Pairwise Products

Physical, Mathematical, and Personal Reality

The September 2019 Special Issue of Scientific American is a must read. Unfortunately it is behind a paywall, so you should purchase a copy at a store or digitally online. All the articles are fascinating and relevant, and address basic questions of epistemology—how do we know what we know? The first section, “Truth”, is the most pertinent to my thinking, as it covers three subjects I have been pondering for years.

Physical Reality. The first article in the section is “Virtually Reality: How close can physics bring us to a truly fundamental understanding of the world?” by George Musser. I have addressed this issue of physical reality in my article Angular Momentum, with an emphasis on the role of mathematics. Musser cites the difficulties of trying to understand quantum mechanics after almost one hundred years or the failure to marry quantum mechanics with Einstein’s theory of gravitation as possible indications that there might be limits to our human endeavor to comprehend physical reality. This frustration is not new:

Over the generations, physicists have oscillated between self-assurance and skepticism, periodically giving up on ever finding the deep structure of nature and downgrading physics to the search for scraps of useful knowledge. Pressed by his contemporaries to explain how gravity works, Isaac Newton responded: “I frame no hypotheses.”

Continue reading

Circular Rendezvous Mystery

Here is yet another surprising result from Colin Hughes at Maths Challenge.

Problem
It can be shown that a unique circle passes through three given points. In triangle ABC three points A’, B’, and C’ lie on the edges opposite A, B, and C respectively. Given that the circle AB’C’ intersects circle BA’C’ inside the triangle at point P, prove that circle CA’B’ will be concurrent with P.”

I have to admit it took me a while to arrive at the final version of my proof. My original approach had some complicated expressions using various angles, and then I realized I had not used one of my assumptions. Once I did, all the complications faded away and the result became clear.

See Circular Rendezvous Mystery.

Flipping Parabolas

This is a stimulating problem from the UKMT Senior Math Challenge for 2017. The additional problem “for investigation” is particularly challenging. (I have edited the problem slightly for clarity.)

“The parabola with equation y = x² is reflected about the line with equation y = x + 2. Which of the following is the equation of the reflected parabola?

A_x = y² + 4y + 2_____B_x = y² + 4y – 2_____C_x = y² – 4y + 2
D_x = y² – 4y – 2_____E_x = y² + 2

For investigation: Find the coordinates of the point that is obtained when the point with coordinates (x, y) is reflected about the line with equation y = mx + b.”

Answer.

See Flipping Parabolas for a solution.

Fibonacci, Chickens, and Proportions

There is the famous chicken and the egg problem: If a chicken and a half can lay an egg and a half in a day and a half, how many eggs can three chickens lay in three days? Fibonacci 800 years ago in his book Liber Abaci (1202 AD) did not have exactly this problem (as far as I could find), but he posed its equivalent. And most likely the problem came even earlier from the Arabs. So we can essentially claim Fibonacci (or the Arabs) as the father of the chicken and egg problem. Here are three of Fibonacci’s actual problems:

  1. “Five horses eat 6 sestari of barley in 9 days; it is sought by the same rule how many days will it take ten horses to eat 16 sestari.
  2. A certain king sent indeed 30 men to plant trees in a certain plantation where they planted 1000 trees in 9 days, and it is sought how many days it will take for 36 men to plant 4400 trees.
  3. Five men eat 4 modia of corn in one month, namely in 30 days. Whence another 7 men seek to know by the same rule how many modia will suffice for the same 30 days.”

By modern standards these problems all involve simple arithmetic to solve. But there are actually some subtleties in mapping the mathematical model to the situation, in which fractions, proportions, ratios, and “direct variation” get swirled into the mix—naturally causing some confusion.

Answers.

See Fibonacci, Chickens, and Proportions for a solution.