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Amazing Radical Sum 
4 August 2019 

Jim Stevenson 

The craziness of manipulating radicals strikes again.  This 2006 four-star problem from Colin 
Hughes at Maths Challenge1 is really astonishing, though it takes the right key to unlock it. 

Problem 

Consider the following sequence: 
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For which values of [positive integer] n is S(n) rational? 

Solution 
The trick is to “rationalize” the terms, that is, multiply the top and bottom by the conjugate 

√(n + 1) – √n.   
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Then we have another telescoping sum:  
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So S(n) is rational if and only if  
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for some positive integers k and m, k > m. 

Claim.   k/m is a positive integer.2 

Suppose not, that is, suppose m > 1 and m does not divide k.  Then k = mq + r for 0 < r < m and 
some integer q.  From equation (2) 
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Assume that r/m is reduced to lowest terms, that is, r and m have no common factors.  Then for 
equation (3) to represent an integer n, all of m must divide the last term 2(q + 1) + r/m, which must 
therefore at least be an integer itself, say p.  But that would mean r/m = p – 2(q + 1) is also an integer, 
contradicting the fact that r/m < 1.  Hence k/m must be a positive integer. Q.E.D. 

Therefore S(n) is integral, if and only if n is one less than a perfect square, that is, n = k2 – 1 for 
some integer k (or equivalently, if n is the product of two integers that differ by 2 (consecutive odd 

                                                      
1  “Reciprocal Radical Sum” Problem ID: 267 (05 Feb 2006) Difficulty: 4 Star at mathschallenge.net   “A 

four-star problem: A comprehensive knowledge of school mathematics and advanced mathematical tools 
will be required.” (https://mathschallenge.net/problems/pdfs/mathschallenge_4_star.pdf) 

2  JOS:  Maths Challenge does not show this. 
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numbers or consecutive even numbers), since k2 – 1 = (k + 1)(k – 1) ).  In which case, from 

equation (1),  S(n) =  11)1(11 2kn  k – 1. 

For example, if n = 3 = 3∙1, then  
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And S(8) = S(4∙2) = 2, S(15) = S(5∙3) = 3, etc.  Simply amazing! 
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