Amazing Radical Sum

4 August 2019

Jim Stevenson
The craziness of manipulating radicals strikes again. This 2006 four-star problem from Colin Hughes at Maths Challenge is really astonishing, though it takes the right key to unlock it.

Problem

Consider the following sequence:

$$
S(n)=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{n+1}+\sqrt{n}}
$$

For which values of [positive integer] n is $\mathrm{S}(n)$ rational?

Solution

The trick is to "rationalize" the terms, that is, multiply the top and bottom by the conjugate $\sqrt{ }(n+1)-\sqrt{ } n$.

$$
\frac{1}{\sqrt{n+1}+\sqrt{n}} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}-\sqrt{n}
$$

Then we have another telescoping sum:

$$
\begin{equation*}
S(n)=(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+(\sqrt{4}-\sqrt{3})+\ldots+(\sqrt{n+1}-\sqrt{n})=\sqrt{n+1}-1 \tag{1}
\end{equation*}
$$

So $S(n)$ is rational if and only if

$$
\begin{equation*}
\sqrt{n+1}-1=\frac{k}{m} \tag{2}
\end{equation*}
$$

for some positive integers k and $m, k>m$.
Claim. k / m is a positive integer. ${ }^{2}$
Suppose not, that is, suppose $m>1$ and m does not divide k. Then $k=m q+r$ for $0<r<m$ and some integer q. From equation (2)

$$
\begin{equation*}
n=\left(\frac{k}{m}+1\right)^{2}-1=\frac{k}{m}\left(\frac{k}{m}+2\right)=\frac{m q+r}{m}\left(\frac{m q+r}{m}+2\right)=q(q+2)+\frac{r}{m}\left(2(q+1)+\frac{r}{m}\right) \tag{3}
\end{equation*}
$$

Assume that r / m is reduced to lowest terms, that is, r and m have no common factors. Then for equation (3) to represent an integer n, all of m must divide the last term $2(q+1)+r / m$, which must therefore at least be an integer itself, say p. But that would mean $r / m=p-2(q+1)$ is also an integer, contradicting the fact that $r / m<1$. Hence k / m must be a positive integer. Q.E.D.

Therefore $S(n)$ is integral, if and only if n is one less than a perfect square, that is, $n=k^{2}-1$ for some integer k (or equivalently, if n is the product of two integers that differ by 2 (consecutive odd

[^0]numbers or consecutive even numbers), since $\left.k^{2}-1=(k+1)(k-1)\right)$. In which case, from equation (1), $S(n)=\sqrt{n+1}-1=\sqrt{\left(k^{2}-1\right)+1}-1=k-1$.

For example, if $n=3=3 \cdot 1$, then

$$
S(3)=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{3+1}-1=1 .
$$

And $S(8)=S(4 \cdot 2)=2, \mathrm{~S}(15)=S(5 \cdot 3)=3$, etc. Simply amazing!

[^0]: ${ }^{1}$ "Reciprocal Radical Sum" Problem ID: 267 (05 Feb 2006) Difficulty: 4 Star at mathschallenge.net "A four-star problem: A comprehensive knowledge of school mathematics and advanced mathematical tools will be required." (https://mathschallenge.net/problems/pdfs/mathschallenge_4_star.pdf)
 ${ }^{2}$ JOS: Maths Challenge does not show this.

