Tag Archives: calculus

Hossenfelder Stagnation Problem

Sabine Hossenfelder wrote an excellent blog posting about the growing awareness that outstanding scientific problems are not getting solved at the same rate as in the past. Her whole article is worth a read, as are all her postings, but this latest contained a mathematical statement that warranted justification. For scientists “How much working time starting today corresponds to, say, 40 years working time starting 100 years ago. Have a guess! Answer: About 14 months.” See Hossenfelder Stagnation Problem.

Triangular Boundary Problem

This problem comes from the defunct Wall Street Journal Varsity Math Week collection.

“The coach then shows the team the diagram to the left and asks: What is the maximum area of a rectangle contained entirely within a triangle with sides of 9, 10 and 17?”

I changed the numbers a bit to make my calculations easier, but left the problem otherwise unchanged. When I checked the Varsity Math Week solution, I saw they used a simplifying formula that I could not remember. I also believed their solution left out a justification for the maximal area. Besides an intuitive solution for this, I also included a calculus version. See the Triangular Boundary Problem.

Kepler’s Laws and Newton’s Laws

Years ago (1963) I got the paperback The Calculus:A Genetic Approach, by Otto Toeplitz, which presented the basic ideas of the differential and integral calculus from a historical point of view. One thing Toeplitz did at the end of his book that I had not seen in other texts was to show the equivalence of Kepler’s Laws and Newton’s Law of Gravity. (Since 1963 David Bressoud has developed this theme in his excellent 1991 text.) I thought I would try to emulate Toeplitz’s approach with more modern notation (vectors) and arguments in hopes of extracting the essential ideas from the clutter.

A by-product of this effort was to reveal strongly the different paths that physics and mathematics follow in understanding physical reality.  The mystery is that the mathematics ends up describing the physics so well.  I will return to this theme a number of times in other posts.  See Kepler’s Laws and Newton’s Laws.