Fibonacci Fandango

1 June 2019
Jim Stevenson

This is from the UKMT Senior Challenge of 1999.
What is the sum to infinity of the convergent series

$$
\frac{1}{2}+\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{5}{32}+\frac{8}{64}+\frac{13}{128}+\frac{21}{256}+\frac{34}{512}+\ldots ?
$$

A $7 / 4$
B 2
C $\sqrt{ } 5$
D 9/4
E 7/3

Solution

First, write the series and its sum S as

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{5}{32}+\frac{8}{64}+\frac{13}{128}+\frac{21}{256}+\frac{34}{512}+\ldots=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}=\sum_{n=1}^{\infty} b_{n}=S \tag{1}
\end{equation*}
$$

where the numerators a_{n} satisfy the Fibonacci sequence relationship

$$
a_{n}=a_{n-1}+a_{n-2}
$$

for $\mathrm{n}=3,4, \ldots$ I got side-tracked at first looking at ratios of successive b_{n} derived from the a_{n}, which would lead to a relationship involving the golden mean $(1 \pm \sqrt{5}) / 2$. But that only helps with establishing convergence and not the sum. The Fibonacci relation does induce a direct relationship on the b_{n}, however, which turns out to be useful:

$$
b_{n}=\frac{a_{n}}{2^{n}}=\frac{a_{n-1}+a_{n-2}}{2^{n}}=\frac{1}{2} \frac{a_{n-1}}{2^{n-1}}+\frac{1}{4} \frac{a_{n-2}}{2^{n-2}}=\frac{1}{2} b_{n-1}+\frac{1}{4} b_{n-2}
$$

for $\mathrm{n}=3,4, \ldots$ Then

$$
\sum_{n=3}^{\infty} b_{n}=\frac{1}{2} \sum_{n=2}^{\infty} b_{n}+\frac{1}{4} \sum_{n=1}^{\infty} b_{n}
$$

or, from equation (1)

$$
\left(S-\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{2}\left(S-\frac{1}{2}\right)+\frac{1}{4} S
$$

and so

$$
S=2(\text { Answer B) }
$$

© 2019 James Stevenson

