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This 2007 four-star problem from Colin Hughes at Maths Challenge
1
 is definitely a bit 

challenging.   

Problem 

For any positive integer, k, let Sk = {x1, x2, ... , xn} be the set of [non-negative] real numbers for 

which  

x1 + x2 + ... + xn = k 

and P = x1 x2 ... xn is maximised.  For example, when k = 10, the set {2, 3, 5} would give P = 30 and 

the set {2.2, 2.4, 2.5, 2.9} would give P = 38.25. In fact, S10 = {2.5, 2.5, 2.5, 2.5}, for which 

P = 39.0625. 

Prove that P is maximised when all the elements of S are equal in value and rational. 

I took a different approach from Maths Challenge, but for me, it did not rely on remembering a 

somewhat obscure formula.  (I don’t remember formulas well at my age—only procedures, processes, 

or proofs, which is ironic, since at a younger age it was just the opposite.)  It is also clear from the 

Maths Challenge solution that the numbers were assumed to be non-negative. 

My Solution 

I saw the problem as a constrained optimization problem, which typically can be solved with 

Lagrange Multipliers (See for example [1] pp.859-861).  We are trying to maximize the function P = f 

where 

 f(x1, x2, ... , xn) = x1 x2 ... xn (1) 

subject to the constraint 

 g(x1, x2, ... , xn) = x1 + x2 + ... + xn – k = 0. (2) 

In terms of the n-vector x = (x1, x2, ... , xn), we are 

trying to maximize f(x) where x is constrained to 

satisfy g(x) = 0. 

Figure 1 shows the situation (for n = 2) where 

we have represented f and g by their constant 

contours (like the height contours on a relief map).  

The gradient vectors ∇∇∇∇f and ∇∇∇∇g of these contours 

are perpendicular to them (perpendicular to their 

tangents) at each point and represent the direction 

of maximally increasing values.  The red arrows 

in the figure represent the direction one could 

move along the contour g(x) = 0 to increase the 

value of f (“hill climbing”).  These directions of 
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Figure 1    Lagrange Multiplier Idea 
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motion converge on the “highest” point or maximum for f along g(x) = 0.  At that point the gradient 

vectors of f and g are parallel, that is, ∇∇∇∇f = λ ∇∇∇∇g for some scalar λ.  λ  is called a Lagrange multiplier.   

(The rigorous proof of this idea is left to an advanced calculus course.  Technically the Lagrange 

multiplier method provides an extreme point where the function f may be either a maximum, 

minimum, or neither (saddle point).  There are expressions involving second partials to sort this out, 

but usually it is clear from the problem statement what the case might be.) 

Let e1 = (1, 0, …, 0), e2 = (0, 1, …, 0), …, en = (0, 0, …, 1) represent the unit basis vectors for R
n
.  

Then  
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Note that in each expression for ∂f/∂xk only xk is missing from the product in P = f.  Also note that all 

the gradients have non-negative coefficients, which would imply heading toward a maximum. 

So at the maximum point, ∇∇∇∇f = λ ∇∇∇∇g implies that for every k, xk λ = P, the entire product.  

Therefore,  

 x1 = x2 = ... = xn = P/λ 

Let x0 represent the common value for all the xs.  From equation (2) we have  

 k = x1 + x2 + ... + xn = n x0 

so  x0 = k/n 

Therefore, the product P = x1 x2 ... xn is maximal when all the xs are the same and rational.  (Note 

in the example given in the problem statement, k = 10 and n = 4, so the common value is 10/4 = 2.5.) 

Maths Challenge Solution 

This proof will make use of the AM-GM inequality ([2]), which states that for any set of [non-

negative] real numbers their arithmetic mean is greater than or equal to their geometric mean. 

 (x1 + x2 + ... + xn)/n ≥ (x1 x2 ... xn)
1/n

 (1) 

In particular, equality is given if and only if x1 = x2 = ... = xn. 

Now [by assumption on Sk]  

 k/n = (x1 + x2 + ... + xn)/n ≥ (x1 x2 ... xn)
1/n

 

so (k/n)
n
 ≥ x1 x2 ... xn = P 

[As P ≤ (k/n)
n
, by the equality condition of the AM-GM inequality we have that P will be 

maximised (P = (k/n)
n
) when the terms are all equal. Let x0 be that common value, that is, x0 = x1 = x2 

= ... = xn.  Then (k/n)
n
 = P = (x0)

n
 means the common value x0 = k/n, a rational number.] 

I actually reworded the original (blue text) and deleted the Maths Challenge proof that the 

common value for the xs was rational, which proceeded by maximizing (the already maximized) 

P = (k/n)
n
 as a function of n, for some reason.  Since k and n are given fixed, I did not follow his 

argument or the reason for it.  I may be missing something, but what I wrote seems sufficient. 
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Certainly the Maths Challenge solution is shorter, but all the work is hidden in the AM-GM 

inequality, which I have trouble remembering—and that includes the proof (maybe by mathematical 

induction?).  Lagrange multipliers are such a standard and ubiquitous method for constrained 

optimization that I naturally thought of them first.  And the gradient computations are trivial in this 

case.  Also, I naturally love the geometric flavor of Lagrange multipliers which offer a visual context 

for the problem (reflected accurately in Figure 1 for the case n = 2). 
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