Conical Bottle Problem

(6 November 2018)

Jim Stevenson

I was astonished that this problem was suitable for $8^{\text {th }}$ graders. First of all the formula for the volume of a cone is one of the least-remembered of formulas, and I certainly never remember it. So my only viable approach was calculus, which is probably not a suitable solution for an $8^{\text {th }}$ grader.
(https://mindyourdecisions.com/blog/2018/11/01/challenge-for-13-year-olds-how-tall-is-the-bottle/, retrieved 11/5/2018)

Challenge for 13 Year Olds How Tall Is The Bottle?

Presh Talwalkar, November 1, 2018
This was sent to me as a competition problem for 8th graders, so it would be a challenge problem for students aged 12 to 13 .

When a conical bottle rests on its flat base, the water in the bottle is 8 cm from its vertex. When the same conical bottle is turned upside down, the water level is 2 cm from its base. What is the height of the bottle? (Note "conical" refers to a right circular cone as is common usage.)

I at first thought this problem was impossible. But it actually can be solved. Give it a try and then watch the video for a solution.

My Solution (Calculus)

Figure 1 shows the set-up for the calculus solution. If the height of the cone is given by the value h and the radius of the base of the cone by the value R , then the cone is given by rotating an inclined

Figure 1 Volume of rotation - Calculus Set-up
line about the x-axis. The line has an equation $y=m x$ where m is the constant R / h. The two volumes of the cone in the problem are obtained by integrating the infinitesimal disks ($\pi y^{2} d x$) between 0 and $h-2$ and between 8 and h. Since the volumes are equal, we equate the results. That is,

$$
\int_{0}^{h-2} \pi y^{2} d x=\int_{8}^{h} \pi y^{2} d x
$$

or

$$
\int_{0}^{h-2} x^{2} d x=\int_{8}^{h} x^{2} d x
$$

since the constant factors πm^{2} cancel from both sides. This yields

$$
\left.\left.\frac{x^{3}}{3}\right]_{0}^{h-2}=\frac{x^{3}}{3}\right]_{8}^{h}
$$

or (canceling the $1 / 3 \mathrm{~s}$)

$$
\begin{equation*}
(h-2)^{3}=h^{3}-8^{3} \tag{*}
\end{equation*}
$$

or

$$
h^{2}-2 h-84=0
$$

Therefore,

$$
h=1+\sqrt{ } 85
$$

Talwalkar Solution (Geometry)

The key to solving this problem is the volume of water in each cone is the same. Then it becomes a matter of setting up the correct equations and simplifying using similar triangles.

First let's deal with the cone resting on its base (Figure 2). Define the variables:
h - height of bottle
R - radius of bottle's base
r_{1} - radius of circle 8 cm from vertex

The volume of water is the volume of the entire bottle minus the volume of the cone 8 cm from the vertex, which is:

$$
(\pi / 3) R^{2} h-(\pi / 3)\left(r_{1}\right)^{2}(8)
$$

The two right triangles in the diagram are similar, and so we have:

$$
r_{1} / 8=R / h \Rightarrow r_{1}=8 R / h
$$

We substitute this back into the volume of water formula to get:

Figure 2

$$
(\pi / 3) R^{2} h-(\pi / 3)(8 R / h)^{2}(8)=(\pi / 3) R^{2}\left(h-512 / h^{2}\right)
$$

We now do a similar calculation for the other diagram (Figure 3). The height and radius of the bottle is the same, so we only need to define one more variable:

$$
r_{2}-\text { radius of circle } 2 \mathrm{~cm} \text { from base }
$$

The volume of water is the volume of cone 2 cm from the base, which has a height of $h-2$. So its volume is:

$$
(\pi / 3)\left(r_{2}\right)^{2}(h-2)
$$

Again the two right triangles in the diagram are similar, and so we have:

$$
r_{2} /(h-2)=R / h \Rightarrow r_{2}=(h-2) R / h
$$

We substitute this back into the volume of water formula to get:

$$
(\pi / 3)((h-2) R / h)^{2}(h-2)=(\pi / 3) R^{2}(h-2)^{3} / h^{2}
$$

Figure 3

It seems like we have just come up with some complicated formulas. But if we keep working we will find a miraculous cancellation. We now set the two formulas for the volume of water equal to each other.

$$
(\pi / 3) R^{2}\left(h-512 / h^{2}\right)=(\pi / 3) R^{2}(h-2)^{3} / h^{2}
$$

The term $(\pi / 3) R^{2}$ is common to both sides of the equation, so it cancels out-it turns out the answer is independent of the radius of the bottle!

$$
\begin{aligned}
h-512 / h^{2} & =(h-2)^{3} / h^{2} \\
h^{3}-512 & =(h-2)^{3} \\
h^{3}-512 & =h^{3}-6 h^{2}+12 h-8 \\
6 h^{2}-12 h-504 & =0 \\
h^{2}-2 h-84 & =0
\end{aligned}
$$

Now we can solve using the quadratic formula, and since height has to be positive, we only keep the solution with $h>0$:

$$
h=1+\sqrt{ } 85 \approx 10.2 \mathrm{~cm}
$$

And like magic we have solved for the height of the bottle, even without knowing the radius of the bottle!

Interestingly, the answer is very close to $8+2=10$, which would be the case if the water filled exactly half of the bottle. It is a cruel thing they made the "intuitive" answer so close to the actual answer!
© 2019 James Stevenson

