Pairwise Products

7 August 2019

Jim Stevenson

This 2005 four-star problem from Colin Hughes at Maths Challenge ${ }^{1}$ is also a bit challenging.

Problem

For any set of real numbers, $\mathrm{R}=\{x, y, z\}$, let sum of pairwise products,

$$
\mathrm{S}=x y+x z+y z .
$$

Given that $x+y+z=1$, prove that $\mathrm{S} \leq 1 / 3$.
Again, I took a different approach from Maths Challenge, whose solution began with an unexplained premise.

My Solution

I saw the problem again as a constrained optimization problem where we are trying to find the maximum for S under a constraint on x, y, z and that the maximum is $\leq 1 / 3$. Again, this problem can typically be solved with Lagrange Multipliers (See for example [1] pp.859-861 or my previous post "Maximum Product"). We are trying to maximize the function S where

$$
\begin{equation*}
S(x, y, z)=x y+x z+y z \tag{1}
\end{equation*}
$$

subject to the constraint

$$
\begin{equation*}
g(x, y, z)=x+y+z-1=0 . \tag{2}
\end{equation*}
$$

The Lagrange multiplier approach says that at an extreme point, the gradients satisfy $\nabla f=\lambda \nabla g$ for some scalar λ, where λ is the Lagrange multiplier. We can assume the set of real numbers x, y, z under consideration are non-negative, so that at least $S \geq 0$ on that subset, and thus greater than any negative values. Therefore the gradients are both pointing in the positive x, y, z directions and so the extreme value is a maximum.

Let $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)$ represent the unit basis vectors for \mathbf{R}^{3}. Then

$$
\nabla S=\frac{\partial S}{\partial x} \mathbf{i}+\frac{\partial S}{\partial y} \mathbf{j}+\frac{\partial S}{\partial z} \mathbf{k}=(y+z) \mathbf{i}+(x+z) \mathbf{j}+(x+y) \mathbf{k}
$$

and

$$
\nabla g=\frac{\partial g}{\partial x} \mathbf{i}+\frac{\partial g}{\partial y} \mathbf{j}+\frac{\partial g}{\partial z} \mathbf{k}=\mathbf{i}+\mathbf{j}+\mathbf{k}
$$

So at the maximum point, $\nabla S=\lambda \nabla g$ implies we have the following three equations

$$
\begin{aligned}
& y+z=\lambda \\
& x+z=\lambda \\
& x+y=\lambda
\end{aligned}
$$

[^0]Subtracting the first two yields $x=y$ and subtracting the last two yields $y=z$. Therefore

$$
x=y=z=\lambda / 2
$$

at the maximum point. Substituting into equation (2) yields $\lambda=2 / 3$, which means

$$
x=y=z=1 / 3
$$

So that the maximum value of S is

$$
S(1 / 3,1 / 3,1 / 3)=1 / 9+1 / 9+1 / 9=1 / 3 .
$$

This means for all x, y, z,

$$
S(x, y, z) \leq 1 / 3
$$

I find this solution elegant, simple, and slick. Now we get to compare it to the messy Maths Challenge solution, which of course avoids calculus.

Maths Challenge Solution

Let $x=1 / 3+a, y=1 / 3+b$, and $z=1 / 3+c .^{2}$ Therefore,

$$
x+y+z=1 / 3+a+1 / 3+b+1 / 3+c=1+a+b+c
$$

But as $x+y+z=1$, we deduce that $a+b+c=0$. Then

$$
\begin{aligned}
(a+b+c)^{2} & =a^{2}+b^{2}+c^{2}+2(a b+a c+b c)=0 \\
2(a b+a c+b c) & =-\left(a^{2}+b^{2}+c^{2}\right) \\
a b+a c+b c & =-\left(a^{2}+b^{2}+c^{2}\right) / 2=-d
\end{aligned}
$$

where $d \geq 0$.
So

$$
\begin{aligned}
x y+x z+y z & =(1 / 3+a)(1 / 3+b)+(1 / 3+a)(1 / 3+c)+(1 / 3+b)(1 / 3+c) \\
& =1 / 9+a / 3+b / 3+a b+1 / 9+a / 3+c / 3+a c+1 / 9+b / 3+c / 3+b c \\
& =1 / 3+(2 / 3)(a+b+c)+a b+a c+b c
\end{aligned}
$$

As $a+b+c=0$ and $a b+a c+b c=-d$, we get,

$$
\mathrm{S}=x y+x z+y z=1 / 3-d \leq 1 / 3
$$

Q.E.D.

Wonderfully ugly arithmetic. No way could I negotiate this labyrinth without a lot of arithmetic errors. At last, an example that shows the virtues of calculus.

References

[1] Thomas Jr., George B. (late), Maurice D. Weir, Joel R. Hass, Thomas' Calculus: Early Transcendentals 13th Edition, Pearson, 1200 pp, 2014
© 2019 James Stevenson

[^1]
[^0]: 1 "Pairwise Products" Problem ID: 225 (24 May 2005) Difficulty: 4 Star at mathschallenge.net. "A four-star problem: A comprehensive knowledge of school mathematics and advanced mathematical tools will be required." (https://mathschallenge.net/problems/pdfs/mathschallenge_4_star.pdf)

[^1]: ${ }^{2}$ JOS: Why? I suppose the problem solver is supposed to guess the maximum might be at $(1 / 3,1 / 3,1 / 3)$ and then have to show any point away from this point will yield a lesser value for S.

