Tag Archives: algebra

Butcher Boy Problem

This is another long historical story from Sam Loyd with a puzzle attached.

“NOTICING THE HIGH price recently paid at auction for an autograph of General Grant reminds me to say that I am the proud possessor of what I believe to be the last signature made by General Grant.

The story connected with it introduces a somewhat pretty problem, and induces me to pay a tribute to Grant’s mathematical ability, at the expense of the many who have no love for figures. I take occasion here to say that while journeying through life and jostling up against all manner of people, the fact has been impressed upon my mind that with few exceptions all successful men were those who endowed with a ready faculty for correct mental arithmetic. On the other hand, there is a class of never-do-wells who guess or jump at conclusions in a reckless way, and cannot even figure up how much to pay on the dollar when the inevitable smash comes.

I could mention a dozen incidents connected with great men as illustrating their aptitude for correct calculations, but this one will suffice to call attention to Grant’s aptitude for figures.

We all remember the story of how he figured his way into West Point, after that memorable journey for a pound of butter, when he heard of the chance for a competitive examination. Professor Agnell, the master of mathematics at West Point, with whom I used to play chess, used to say that “Grant had a great love for mathematics and horses.”

Grant did love a horse and could pick out the good qualities at a glance, and, oh, my! how he despised a man who would abuse a dumb animal!

My story turns upon an incident as told by Ike Reed, of the old horse mart of Johnson & Reed, who gave me the autograph from their sales book of 1884, as photographed in the picture. During the last term of his Presidency General Grant returned from his afternoon drive and in a humorous but somewhat mortified way told Colonel Shadwick, who kept the Willard Hotel, that he had been passed on the road by a butcher cart in a way that made his crack team appear to be standing still. He said he would like to know who owned the horse and if it was for sale.

The horse was readily found and purchased from an unsophisticated German for half of what he would have asked had he known the purchaser was the President of the United States. The horse was of light color and was none other than Grant’s favorite horse, “Butcher Boy,” named after the incident mentioned. Well, some years later, after the Wall street catastrophe, which impaired the finances of the Grant family, Butcher Boy and his mate were sent to the auction rooms of Johnson & Reed, and sold for the sum of $493.68. Mr. Reed said he could have gotten twice as much for them if he had been permitted to mention their ownership. But General Grant positively prohibited the fact being made known. “Nevertheless,” said Reed. “you come out two per cent, ahead, for you make 12 per cent, on Butcher Boy and lose 10 per cent, on the other.”

“I suppose that is the way some people would figure it out.” replied the General, but the way he laughed showed that he was better at figures than some people, so I am going to ask our puzzlists to tell me what he got for each horse if he lost 10 per cent on one and made 12 per cent on the other, but cleared 2 per cent on the whole transaction?

It may be mentioned incidentally that General Grant stated that he had presented one of the horses to Mrs. Fred Grant, and as shown in the receipt signed for her.”

Answer.

See the Butcher Boy Problem for solution.

Fireworks Rocket

This is another physics-based problem from Colin Hughes’s Maths Challenge website (mathschallenge.net) that may take a bit more thought.

“A firework rocket is fired vertically upwards with a constant acceleration of 4 m/s2 until the chemical fuel expires. Its ascent is then slowed by gravity until it reaches a maximum height of 138 metres.

Assuming no air resistance and taking g = 9.8 m/s2, how long does it take to reach its maximum height?”

I can never remember the formulas relating acceleration, velocity, and distance, so I always derive them via integration.

Answer.

See the Fireworks Rocket for solutions.

Falling Sound Problem

This math problem from Colin Hughes’s Maths Challenge website (mathschallenge.net) hearkens back to basic physics.

“A boy drops a stone down a well and hears the splash from the bottom after three seconds.  Given that sound travels at a constant speed of 300 m/s and the acceleration of the stone due to gravity is 10 m/s2, how deep is the well?”

Answer.

See the Falling Sound Problem for solutions.

A Divine Language

I have just finished reading a most remarkable book by Alec Wilkinson, called A Divine Language: Learning Algebra, Geometry, and Calculus at the Edge of Old Age.  I had read an essay of his in the New Yorker that turned out to be essentially excerpts from the book.  I was so impressed with his descriptions of mathematics and intrigued by the premise of a mature adult in his 60s revisiting the nightmare of his high school experience with mathematics that I was eager to see if the book was as good as the essay.  It was, and more.

The book is difficult to categorize—it is not primarily a history of mathematics, as suggested by Amazon. But it is fascinating on several levels.  There is the issue of a mature perspective revisiting a period of one’s youth; the challenges of teaching a novice mathematics, especially a novice who has a strong antagonism for the subject; and insights into why someone would want to learn a subject that can be of no “use” to them in life, especially their later years.

Wilkinson has a strong philosophical urge; he wanted to understand the role of mathematics in human knowledge and the perspective it brought to life.  He was constantly asking the big questions:  is mathematics discovered or invented, what is the balance between nature and nurture, why does mathematics seem to describe the world so well,  what is the link between memorization and understanding, how do you come to understand anything?

See A Divine Language

15 Degree Triangle Puzzle

This math problem from Colin Hughes’s Maths Challenge website (mathschallenge.net) is a bit more challenging.

“In the diagram, AB represents the diameter, C lies on the circumference of the circle, and you are given that

(Area of Circle) / (Area of Triangle) = 2π.

Prove that the two smaller angles in the triangle are exactly 15° and 75° respectively.”

See the 15 Degree Triangle Puzzle

Two Candles

This is another candle burning problem, presented by Presh Talwalkar.

“Two candles of equal heights but different thicknesses are lit. The first burns off in 8 hours and the second in 10 hours. How long after lighting, in hours, will the first candle be half the height of the second candle? The candles are lit simultaneously and each burns at a constant linear rate.”

Answer.

See Two Candles for solutions.

Hard Time Conundrum

This problem comes from the “Problems Drive” section of the Eureka magazine published in 1955 by the Archimedeans at Cambridge University, England.  (“The problems drive is a competition conducted annually by the Archimedeans. Competitors work in pairs and are allowed five minutes per question ….”)

“There are ten times as many seconds remaining in the hour as there are minutes remaining in the day. There are half as many minutes remaining in the day as there will be hours remaining in the week at the end of the day.  What time is it on what day?”

One of the hardest parts of the problem is just being able to translate the statements into mathematical terms.  Solvable in 5 minutes?!!!

Answer.

See the Hard Time Conundrum for a solution.