Fireworks Rocket

Jim Stevenson

18 June 2022
This is another physics-based problem from Colin Hughes's Maths Challenge website (mathschallenge.net) ([1]) that may take a bit more thought.

A firework rocket is fired vertically upwards with a constant acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$ until the chemical fuel expires. Its ascent is then slowed by gravity until it reaches a maximum height of 138 metres.

Assuming no air resistance and taking $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, how long does it take to reach its maximum height?

I can never remember the formulas relating acceleration, velocity, and distance, so I always derive them via integration.

My Solution

keystonefireworks.com
Figure 1 shows a space-time diagram of the problem setup. Initially, the rocket takes off from standing still, accelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$, and arrives at a height h_{0} and vertical velocity v_{0} at time t_{0} when the fuel runs out and the rocket shuts off. The rocket coasts upwards under a downward acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ from gravity, until it stops moving at a height of 138 m at a time $t_{\max }$.

During powered flight we have the rocket's velocity and height are given by the integrals

$$
v(t)=\int_{0}^{t} 4 d t=4 t
$$

and

$$
h(t)=\int_{0}^{t} v(t) d t=\int_{0}^{t} 4 t d t=2 t^{2}
$$

Therefore,

$$
\begin{equation*}
v_{0}=v\left(t_{0}\right)=4 t_{0} \text { and } h_{0}=h\left(t_{0}\right)=2 t_{0}{ }^{2} . \tag{*}
\end{equation*}
$$

During unpowered flight we have the rocket's velocity and height are given by the integrals

$$
v(t)=v_{0}+\int_{t_{0}}^{t}(-9.8) d t=v_{0}-9.8\left(t-t_{0}\right)
$$

and

$$
h(t)=h_{0}+\int_{t_{0}}^{t} v(t) d t=h_{0}+\int_{t_{0}}^{t}\left(v_{0}-9.8\left(t-t_{0}\right)\right) d t=h_{0}+\left[v_{0}\left(t-t_{0}\right)-\frac{9.8\left(t-t_{0}\right)^{2}}{2}\right]
$$

Therefore, from (*)

$$
\begin{equation*}
0=v\left(t_{\max }\right)=v_{0}-9.8\left(t_{\max }-t_{0}\right) \quad \Rightarrow \quad v_{0}=9.8\left(t_{\max }-t_{0}\right)=4 t_{0} \tag{**}
\end{equation*}
$$

and

$$
138=h\left(t_{\max }\right)=h_{0}+v_{0}\left(t_{\max }-t_{0}\right)-9.8\left(t_{\max }-t_{0}\right)^{2} / 2 .
$$

So, from (*) and (**)

$$
\begin{aligned}
138 & =2 t_{0}{ }^{2}+9.8\left(t_{\max }-t_{0}\right)^{2}-9.8\left(t_{\max }-t_{0}\right)^{2} / 2 \\
& =2 t_{0}{ }^{2}+9.8\left(t_{\max }-t_{0}\right)^{2} / 2 \\
& =2 t_{0}{ }^{2}+9.8\left(4 t_{0}\right)^{2} /\left(2 \cdot 9.8^{2}\right) \\
& =2 t_{0}{ }^{2}(13.8 / 9.8)
\end{aligned}
$$

Now from (**),

$$
t_{0}=t_{\max }(9.8 / 13.8),
$$

so

$$
138=2(9.8 / 13.8)^{2}(13.8 / 9.8) t_{\max }^{2}=2(7 \cdot 14 / 138) t_{\max }^{2}
$$

and so

$$
t_{\max }{ }^{2}=(138 / 14)^{2}=(69 / 7)^{2}
$$

implies

$$
t_{\max }=69 / 7 \approx 9.863 \text { seconds }
$$

Maths Challenge Solution

The following is the Maths Challenge solution verbatim with some minor reformatting and paragraph breaks for clarity. No diagram was provided, so the definitions of the indexed values had to be inferred: index 1 denotes when the rocket's fuel runs out, index 2 when its maximum height is reached. u seems to be an initial value for the velocity over each interval. v seems to be the value of the velocity at the end of each interval. w seems to be the value of the velocity at the end of the first interval.

During acceleration phase (as fuel burns), $a=4, u=0$, let $v=w$.

$$
\begin{gather*}
v=u+a t \Rightarrow w=4 t_{1} \tag{1}\\
v^{2}=u^{2}+2 a s^{1} \Rightarrow w^{2}=8 s_{1} \tag{2}
\end{gather*}
$$

During deceleration phase (fuel expired), $a=-9.8, u=w, v=0$.

$$
\begin{gather*}
v=u+a t \Rightarrow 0=w-9.8 t_{2} \Rightarrow w=9.8 t_{2} \tag{3}\\
v^{2}=u^{2}+2 a s \Rightarrow 0=w^{2}-19.6 s_{2} \Rightarrow w^{2}=19.6 s_{2} \tag{4}
\end{gather*}
$$

Equating (1) and (3),

$$
4 t_{1}=9.8 t_{2} \Rightarrow t_{2}=(20 / 49) t_{1},
$$

so total time to reach maximum height,

Equating (2) and (4),

$$
\begin{gathered}
8 s_{1}=19.6 s_{2} \Rightarrow s_{2}=(20 / 49) s_{1}, \\
s_{1}+s_{2}=(69 / 49) s_{1}=138, \\
s_{1}=98 .
\end{gathered}
$$

[^0]Using $s=u t+1 / 2 a t^{2}$ during acceleration phase,

$$
s_{1}=2 t_{1}{ }^{2}, t_{1}=\sqrt{ }\left(\mathrm{s}_{1} / 2\right)=7
$$

Hence time to reach maximum height is $(69 / 49) \cdot 7=69 / 7$ seconds.

References

[1] Hughes, Colin, "Firework Rocket", Maths Challenge, (mathschallenge.net) (March 2004) \#162 p.47. Difficulty: 4 Star. "A four-star problem: A comprehensive knowledge of school mathematics and advanced mathematical tools will be required."
© 2022 James Stevenson

[^0]: 1 JOS: I never remember this formula. If $s=v_{0} t+a t^{2} / 2$ and $v=v_{0}+a t$, then $v^{2}=v_{0}^{2}+2 v_{0} a t+a^{2} t^{2}=v_{0}^{2}+2 a s$.

