Log Lunacy

6 January 2023

Jim Stevenson

This is an initially mind-boggling problem from the 1995 American Invitational Mathematics Exam (AIME) ([1]).

Find the last three digits of the product of the positive roots of

$$
\sqrt{1995} x^{\log _{1995} x}=x^{2}
$$

My Solution

Take $\log _{1995}$ of both sides and simplify.

$$
\begin{gathered}
\log _{1995}\left(1995^{-1 / 2} x^{\log _{1995} x}\right)=\log _{1995} x^{2} \\
1 / 2 \log _{1995} 1995+\left(\log _{1995} x\right)^{2}=2 \log _{1995} x
\end{gathered}
$$

Setting $y=\log _{1995} x$, we get

$$
y^{2}-2 y+1 / 2=0
$$

and so

$$
y=(2 \pm \sqrt{ }(4-2)) / 2=1 \pm 1 / 2 \sqrt{ } 2
$$

Therefore the two positive roots of the original equation, via $x=1995^{y}$, are

$$
x=1995^{1+1 / 2 \sqrt{2}} \text { and } x=1995^{1-1 / 2 \sqrt{2}}
$$

So the product is

$$
\left(1995^{1+1 / 2 \sqrt{2}}\right)\left(1995^{1-1 / 2 \sqrt{ } 2}\right)=1995^{2}=3980025,
$$

which means the last three digits of the result are 025 .

AIME Solutions

AIME's first solution is the same as mine, only they had a slicker way of obtaining the final digits without using a calculator.

Solution 1

Taking the $\log _{1995}$ (logarithm) of both sides and then moving to one side yields the quadratic equation $2\left(\log _{1995} x\right)^{2}-4\left(\log _{1995} x\right)+1=0$. Applying the quadratic formula yields that $\log _{1995} x=1 \pm \frac{\sqrt{2}}{2}$. Thus, the product of the two roots (both of which are positive) is $1995^{1+\sqrt{2} / 2} \cdot 1995^{1-\sqrt{2} / 2}=1995^{2}$, making the solution $(2000-5)^{2} \equiv 025(\bmod 1000)$.

Solution 2

Instead of taking $\log _{1995}$, we take $\log _{x}$ of both sides and simplify:
$\log _{x}\left(\sqrt{1995} x^{\log _{1995} x}\right)=\log _{x}\left(x^{2}\right)$
$\log _{x} \sqrt{1995}+\log _{x} x^{\log _{1995} x}=2$
$\frac{1}{2} \log _{x} 1995+\log _{1995} x=2$
We know that $\log _{x} 1995$ and $\log _{1995} x$ are reciprocals, so let $a=\log _{1995} x$. Then we have $\frac{1}{2}\left(\frac{1}{a}\right)+a=2$. Multiplying by $2 a$ and simplifying gives us $2 a^{2}-4 a+1=0$, as shown above.
Because $a=\log _{1995} x, x=1995^{a}$. By the quadratic formula, the two roots of our equation are $a=\frac{2 \pm \sqrt{2}}{2}$. This means our two roots in terms of x are $1995^{\frac{2+\sqrt{2}}{2}}$ and $1995^{\frac{2-\sqrt{2}}{2}}$. Multiplying these gives 1995^{2}
$1995^{2}(\bmod 1000) \equiv 995^{2}(\bmod 1000) \equiv(-5)^{2}(\bmod 1000) \equiv 25(\bmod 1000)$, so our answer is 025 .

Solution 3

Let $y=\log _{1995} x$. Rewriting the equation in terms of y, we have

$$
\begin{gathered}
\sqrt{1995}\left(1995^{y}\right)^{y}=1995^{2 y} \\
1995^{y^{2}+\frac{1}{2}}=1995^{2 y} \\
y^{2}+\frac{1}{2}=2 y \\
2 y^{2}-4 y+1=0 \\
y=\frac{4 \pm \sqrt{16-(4)(2)(1)}}{4}=\frac{4 \pm \sqrt{8}}{4}=\frac{2 \pm \sqrt{8}}{2}=1 \pm \sqrt{2}
\end{gathered}
$$

Thus, the product of the positive roots is $\left(1995^{\frac{2+\sqrt{8}}{2}}\right)\left(1995^{\frac{2-\sqrt{8}}{2}}\right)=1995^{2}=(2000-5)^{2}$, so the last three digits are 025 .

References

[1] "Problem 2" 1995 AIME Problems (https://artofproblemsolving.com/wiki/index.php/1995_AIME_Problems)
© 2023 James Stevenson

