Log Lunacy

6 January 2023

Jim Stevenson

This is an initially mind-boggling problem from the 1995 American Invitational Mathematics Exam (AIME) ([1]).

Find the last three digits of the product of the positive roots of

 $\sqrt{1995} x^{\log_{1995} x} = x^2$

My Solution

Take log₁₉₉₅ of both sides and simplify.

$$\log_{1995} (1995^{\frac{1}{2}} x^{\log_{1995} x}) = \log_{1995} x^{2}$$

$$\frac{1}{2} \log_{1995} 1995 + (\log_{1995} x)^{2} = 2\log_{1995} x$$

Setting $y = \log_{1995} x$, we get
$$y^{2} - 2 y + \frac{1}{2} = 0$$

$$y = (2 \pm \sqrt{(4-2)})/2 = 1 \pm \frac{1}{2}\sqrt{2}$$

Therefore the two positive roots of the original equation, via $x = 1995^{y}$, are

$$x = 1995^{1 + \frac{1}{2}\sqrt{2}}$$
 and $x = 1995^{1 - \frac{1}{2}\sqrt{2}}$

So the product is

and so

$$(1995^{1+\frac{1}{2}\sqrt{2}})$$
 $(1995^{1-\frac{1}{2}\sqrt{2}}) = 1995^2 = 3980025$

which means the last three digits of the result are 025.

AIME Solutions

AIME's first solution is the same as mine, only they had a slicker way of obtaining the final digits without using a calculator.

Solution 1

Taking the \log_{1995} (logarithm) of both sides and then moving to one side yields the quadratic equation $2(\log_{1995} x)^2 - 4(\log_{1995} x) + 1 = 0$. Applying the quadratic formula yields that $\log_{1995} x = 1 \pm \frac{\sqrt{2}}{2}$. Thus, the product of the two roots (both of which are positive) is $1995^{1+\sqrt{2}/2} \cdot 1995^{1-\sqrt{2}/2} = 1995^2$, making the solution $(2000 - 5)^2 \equiv \boxed{025} \pmod{1000}$.

Solution 2

Instead of taking \log_{1995} , we take \log_x of both sides and simplify:

 $\log_x(\sqrt{1995}x^{\log_{1995}x}) = \log_x(x^2)$ $\log_x\sqrt{1995} + \log_x x^{\log_{1995}x} = 2$ $\frac{1}{2}\log_x 1995 + \log_{1995}x = 2$ We know that $\log_x 1995$ and $\log_{1995}x$ are reciprocals, so let $a = \log_{1995}x$. Then we have $\frac{1}{2}\left(\frac{1}{a}\right) + a = 2$. Multiplying by 2a and simplifying gives us $2a^2 - 4a + 1 = 0$, as shown above.
Because $a = \log_{1995}x$, $x = 1995^a$. By the quadratic formula, the two roots of our equation are $a = \frac{2 \pm \sqrt{2}}{2}$. This means our two roots in terms of x are $1995^{\frac{2+\sqrt{2}}{2}}$ and $1995^{\frac{2-\sqrt{2}}{2}}$. Multiplying these gives 1995^2

 $1995^2 \pmod{1000} \equiv 995^2 \pmod{1000} \equiv (-5)^2 \pmod{1000} \equiv 25 \pmod{1000}$, so our answer is $\boxed{025}$.

Solution 3

Let $y = \log_{1995} x$. Rewriting the equation in terms of y, we have

$$\begin{split} \sqrt{1995} \ (1995^y)^y &= 1995^{2y} \\ 1995^{y^2 + \frac{1}{2}} &= 1995^{2y} \\ y^2 + \frac{1}{2} &= 2y \\ 2y^2 - 4y + 1 &= 0 \\ y &= \frac{4 \pm \sqrt{16 - (4)(2)(1)}}{4} = \frac{4 \pm \sqrt{8}}{4} = \frac{2 \pm \sqrt{8}}{2} = 1 \pm \sqrt{2} \\ \end{split}$$
Thus, the product of the positive roots is $\left(1995^{\frac{2+\sqrt{8}}{2}}\right) \left(1995^{\frac{2-\sqrt{8}}{2}}\right) = 1995^2 = (2000 - 5)^2$, so the last three digits are $\boxed{025}$.

References

[1] "Problem 2" 1995 AIME Problems (https://artofproblemsolving.com/wiki/index.php/1995_AIME_Problems)

© 2023 James Stevenson