Bailing Water Problem

14 April 2023

Jim Stevenson

This is a straight-forward problem from Five Hundred Mathematical Challenges ([1]).

A boat has sprung a leak. Water is coming in at a uniform rate and some has already accumulated when the leak is detected. At this point, 12 men of equal skill can pump the boat dry in 3 hours, while 5 men require 10 hours. How many men are needed to pump it dry in 2 hours?

My Solution

$W_{0}=$ amount of water already in boat
$v=$ rate water is coming in, gal/hr
$t=$ time to pump out water, hr
Then the mathematical model ${ }^{1}$ is

$$
W_{0}+v t=r m t
$$

We are given 12 men can pump out the water in 3 hours, so

$$
\begin{equation*}
W_{0}+v \cdot 3=r \cdot 12 \cdot 3 \tag{1}
\end{equation*}
$$

and 5 men can pump out the water in 10 hours, so

$$
\begin{equation*}
W_{0}+v \cdot 10=r \cdot 5 \cdot 10 \tag{2}
\end{equation*}
$$

We are asked how many men m can pump out the water in 2 hours, so

$$
\begin{equation*}
W_{0}+v \cdot 2=r m \cdot 2 \tag{3}
\end{equation*}
$$

Subtracting equation (2) from equation (1) yields

$$
7 v=14 r \Rightarrow v / r=2
$$

And subtracting equation (3) from equation (1) yields

$$
v=r(36-2 m) \Rightarrow 2 m=36-2 \Rightarrow m=17 .
$$

So it will take 17 men.

Math Challenge Solution

The Math Challenge solution is essentially the same.
Let x be the amount of water present when the pumping begins, y the amount leaking in per hour and z the amount each man can remove per hour. Suppose $h(n)$ is the amount of time in hours needed by n men to pump the boat dry. Then

[^0]\[

$$
\begin{equation*}
x+h(n) y=n h(n) \tag{*}
\end{equation*}
$$

\]

In particular,

$$
x+3 y=12 \cdot 3 \cdot z=36 z
$$

and

$$
x+10 y=5 \cdot 10 \cdot z=50 z
$$

whence $y=2 z$ and $x=30 z$. Thus $(*)$ becomes

$$
30+2 h(n)=n h(n) \quad \text { or } \quad h(n)(n-2)=30 .
$$

When $h(n)=2, n=17$ and 17 men are needed to do the job in 2 hours.

References

[1] Barbeau, Edward J., Murray S. Klamkin, William O. J. Moser, "Problem 216", Five Hundred Mathematical Challenges, Spectrum Series, Mathematical Association of America, Washington D.C, 1995, p. 19 .
© 2023 James Stevenson

[^0]: ${ }^{1}$ For a more detailed discussion about models of this type see the 6/9/2019 posting "Fibonacci, Chickens, and Proportions" (http://josmfs.net/2019/09/06/fibonacci-chickens-and-proportions/).

