Playing with Polys

7 November 2020
Jim Stevenson

Here is a fairly straight-forward problem from 500 Mathematical Challenges ([1]).

Problem 256. Let n be a positive integer. Show that $(x-1)^{2}$ is a factor of $x^{n}-n(x-1)-1$.
thumbs.dreamstime.com

Solution

First,

$$
\begin{align*}
x^{n}-n(x-1)-1 & =\left(x^{n}-1\right)-n(x-1) \\
& =(x-1)\left(x^{n-1}+x^{n-2}+x^{n-3}+\ldots+x+1\right)-n(x-1) \\
& =(x-1)\left(x^{n-1}+x^{n-2}+x^{n-3}+\ldots+x+1-n\right) \tag{1}\\
& =(x-1) p(x)
\end{align*}
$$

Next, recall the result from abstract algebra that if a is a root of the polynomial equation $p(x)=0$, then $(x-a)$ is a factor of the polynomial $p(x) .{ }^{1}$ Now from equation (1) $p(1)=0$. Therefore there is some polynomial $m(x)$ such that

$$
p(x)=(x-1) m(x) \Rightarrow x^{n}-n(x-1)-1=(x-1)^{2} m(x)
$$

which shows that $(x-1)^{2}$ is a factor of $x^{n}-n(x-1)-1$.

References

[1] Barbeau, Edward J., Murray S. Klamkin, William O. J. Moser, Five Hundred Mathematical Challenges, Spectrum Series, Mathematical Association of America, Washington D.C, 1995

$$
\text { © } 2020 \text { James Stevenson }
$$

[^0]
[^0]: ${ }^{1}$ The division algorithm says in general if $q(x)$ is a polynomial of degree less than or equal to the degree of $p(x)$, then we can divide $p(x)$ by $q(x)$ to get polynomials $m(x)$ and $r(x)$ such that $p(x)=m(x) q(x)+r(x)$ where $\operatorname{deg} r(x)<\operatorname{deg} q(x)$. Therefore setting $q(x)=(x-a)$ we can write $p(x)=m(x)(x-a)+r(x)$ where $0=\operatorname{deg}$ $r(x)<\operatorname{deg}(x-1)=1$, so $r(x)$ is a constant. But if $x=a$ is a root, then $0=p(a)=m(x) \cdot 0+r$. So $r=0$ and $p(x)=m(x)(x-a)$, that is, $(x-a)$ is a factor of $p(x)$.

