Handicap Racing

This is a nice variation on a racing problem by Geoffrey Mott-Smith from 1954.

“On one side of the playground some of the children were holding foot-races, under a supervisor who handicapped each child according to age and size. In one race, she placed the big boy at the starting line, the little boy a few paces in front of the line, and she gave the little girl twice as much headstart over the little boy as he had over the big boy. The big boy won the race nevertheless. He overtook the little boy in 6 seconds, and the little girl 4 seconds later.

Assuming that all three runners maintained a uniform speed, how long did it take the little boy to overtake the little girl?”

Answer.

See the Handicap Racing for solution.

Peirce’s Law

The June 2023 Carnival of Mathematics # 216 at Eddie’s Math and Calculator Blog has the rather arresting item concerning Peirce’s Law from the American logician Charles Sanders Peirce (1839 – 1914).

“Peirce’s Law:  Jon Awbrey of the Inquiry Into Inquiry blog

This article explains Pierce’s Law and provides the proof of the law.  The proof is provided in two ways:  by reason and graphically.  Simply put, for propositions P and Q, the law states:

P must be true if there exists Q such that the statement “if P then Q” is true.  In symbols:

(( P ⇒ Q) ⇒ P) ⇒ P

The law is an interesting tongue twister to say the least.”

Perhaps another way of saying it is “if the implication P ⇒ Q implies that P is true, then P must be true.”  Still, it sounds weird.

See Peirce’s Law

(Update 6/20/2023)  Appendix: Valid Argument Continue reading

Milk Mixing Puzzle

This is a classic example of a mixture problem from Dan Griller that recalls my agonies of beginning algebra.

“In Cauchy Village, full fat milk has 3.5% fat content, semi-skimmed milk has a 1.5% fat content, and skimmed milk has a 0.2% fat content. How many liters of full fat milk must be added to 100 liters of skimmed milk to produce semi-skimmed milk?”

Answer.

See the Milk Mixing Puzzle for solution.

Ant Connection Problem

This is a nice puzzle from the Maths Masters team, Burkard Polster (aka Mathologer) and Marty Ross as part of their “Summer Quizzes” offerings.

“Two ants are on a cylindrical glass that is 5 centimetres in diameter. The ants are on opposite sides of the glass, 5 centimetres down from the glass’s rim. If both ants are on the outside of the glass, what is the shortest distance required for one ant to crawl to the other? What if one ant is on the outside of the glass and the other is on the inside?”

Answer.

See the Ant Connection Problem for solution.

Putnam Ellipse Areas Problem

This is a nifty problem from Presh Talwakar.

“This is adapted from the 1994 Putnam, A2. Thanks to Nirman for the suggestion!

Let R be the region in the first quadrant bounded by the x-axis, the line y = x/2, and the ellipse x2/9 + y2 = 1. Let R‘ be the region in the first quadrant bounded by the y-axis, the line y = mx and the ellipse. Find the value of m such that R and R‘ have the same area.”

Answer.

See the Putnam Ellipse Areas Problem for solution.

A New Day

One of the physics blogs I enjoy reading is by the mathematical physicist Peter Woit, called Not Even Wrong.  A recent post provided a tantalizing teaser:

“I want to [link to] an insightful explanation of the history of string theory, discussing the implications of how it was sold to the public. It’s by a wonderful young physicist I had never heard of before, Angela Collier. She has a Youtube channel, and her latest video is string theory lied to us and now science communication is hard.

… It’s as hilarious as it is brilliant, and you have to see for yourself.”

Collier delivered her talk lucidly and thoroughly—all while playing a frenetic video game!  She claimed she used the length of the game to time her talk.  Of course we can walk and talk, and ride bicycles and talk, but I have never seen anyone split their mental concentration between a fast-paced video game and an esoteric physics explanation of the history of string theory and supersymmetry—for over 50 minutes!  And there was something about her presentation that was completely captivating.  It was definitely a serious scientific talk, but the ludicrousness of the game-playing echoed how ridiculous the continued, misplaced fascination with string theory is.  Naturally I had to learn more about this provocative physicist.

See A New Day

Curious Sunbeam Problem

This is a Catriona Agg problem presented by itself, since it turned out to be the most challenging one I ever tried.  Usually I can solve her problems in a few minutes or maybe hours, or sometimes days if they are especially challenging.  But this problem has taken me weeks and I had to rely on a non-geometric argument.  The problem is full of fascinating and unexpected relationships, but I couldn’t find a way to use them to prove the answer.

See the Curious Sunbeam Problem

(Update 5/5/2023)  Alternative Solution Continue reading

The Tired Messenger Problem

Here is another challenging problem from the Polish Mathematical Olympiads.  Its generality will cause more thought than for a simpler, specific problem.

“A cyclist sets off from point O and rides with constant velocity v along a rectilinear highway.  A messenger, who is at a distance a from point O and at a distance b from the highway, wants to deliver a letter to the cyclist.  What is the minimum velocity with which the messenger should run in order to attain his objective?”

See the Tired Messenger Problem

(Update 1/29/2025)  Dan Steinitz Solution

Dan Steinitz from Israel has sent an elegant solution that only involves vectors and geometry without calculus.  I have edited slightly his email and added excerpts from his whiteboard solution, though without the Hebrew annotations, which unfortunately I cannot read.  But that is the glory of the universal language of mathematics: it can be read and understood in any language.

See Dan Steinitz Solution.