Floating Square Puzzle

16 February 2022

Jim Stevenson

This is another puzzle from the Maths Masters team, Burkard Polster (aka Mathologer) and Marty Ross ([1]) as part of their "Summer Quizzes" offerings.

A mysterious square has materialized in the middle of the MCG, hovering in mid-air. The heights above the ground of three of its corners are 13, 21 and 34 metres. The fourth corner is higher still. How high?

My Solution

I parameterized the problem with vectors (Figure 1). Imagine a threedimensional coordinate system with the position vector to the lowest corner of the floating square \mathbf{r} positioned at the origin:

$$
\mathbf{r}=13 \mathbf{k} .
$$

Then vectors along the sides are given by

$$
\begin{aligned}
& \mathbf{u}=\mathrm{a}_{1} \mathbf{i}+\mathrm{b}_{\mathbf{1}} \mathbf{j}+(21-13) \mathbf{k} \\
& \mathbf{v}=\mathrm{a}_{2} \mathbf{i}+\mathrm{b}_{2} \mathbf{j}+(34-13) \mathbf{k}
\end{aligned}
$$

Since the shape is a square, each side is parallel to, and the same length as, its opposite side. Therefore the vectors are parallel translates of each other as shown.

The height of the fourth corner of the square is obtained as the third component

Figure 1 of the vector \mathbf{W} :

$$
\mathbf{w}=\mathbf{r}+\mathbf{u}+\mathbf{v}=\left(\mathrm{a}_{1}+\mathrm{a}_{2}\right) \mathbf{i}+\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right) \mathbf{j}+(13+8+21) \mathbf{k}=\left(\mathrm{a}_{1}+\mathrm{a}_{2}\right) \mathbf{i}+\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) \mathbf{j}+42 \mathbf{k}
$$

Recall that vectors add component-wise, so, since we are only interested in the vertical component, it doesn't matter what the \mathbf{i}, \mathbf{j} components are. Thus the answer is 42 meters.

Maths Masters Solution

The Maths Masters' solution is equivalent (Figure 2).
Answer. The height of the fourth corner is 42 meters, as readers of The Hitchhikers Guide to the Galaxy would have already guessed.

Solution. Label the corners A, B, C and D, as in the diagram. Note that the rise from B to D equals the rise from C to A. (To see this, all that matters is that our shape is a parallelogram). So, using the letters to stand for the heights of

Figure 2
the corners,

$$
D-C=(D-B)+(B-C)=(A-C)+(B-C)
$$

Using the values of A, B, and C, we find $D=42$ meters.

References

[1] Polster, Burkard and Marty Ross, "Maths Challenge 2009, Problem 21", The Age, 30 November 2009 (https://www.qedcat.com/summerquizzes/2009\ QUIZ.pdf)
© 2022 James Stevenson

