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This is a most surprising and amazing identity from the 1965 Polish
Mathematical Olympiads ([1]).

31. Prove that if n is a natural number, then we have
(V2 -1y =Vm-m-1),
where m is a natural number.
Here, natural numbers are 1, 2, 3, ...

I found it to be quite challenging, as all the Polish Math Olympiad
problems seem to be.

My Solution

We will proceed by mathematical induction, but it is a bit

9y |

complicated. As mentioned in earlier posts, for example “Surprising Identity”, the basic principle is
as follows:

hiclipart.com

Principle of Mathematical Induction:
Given: (i) Statement P(n) associated with each natural number n =1, 2, 3, ...

@ii) P(1)is true.

(ii1) For all natural numbers k=1, 2, 3, ... , if P(k) is true, then P(k+1) is true.
Then: For all natural numbers n=1, 2, 3, ...., P(n) is true.

Provisionally, we can define P(n): (\/2 -1)'= m — \/(m — 1), for some natural number m. We
wish to get a more refined expression for m. To get an idea how that might work in this case we look
at some initial statements.

When n = 1, we have
(\2-1'=2-11
and so the pattern holds trivially. For n =2, we have
V2-1P=(2-1)(V2-1)=2-2"2+1=3-202=V9 -8
and so the pattern holds. Finally, consider n = 3.
(V2-1 =(2-1)7(2-1)=3-2V2) N2 - 1) =52 - 7 = V50 — V49.

Again the statement P(r): (V2 — 1)" = Vm — N(m — 1) holds for n = 3.

In the process we notice another pattern, namely

(@a-b\2) (V2 -1)=aN2-b" and (@V2-b) (N2 -1)=a'-b"2

The position of V2 oscillates between the first term and the second term on each iteration. Let’s
codify this. P(n) is (\/2 -1)'= an\/2 — b, when n is odd (because it satisfies that pattern for n = 1) and
P(n) is (\/2 -1'=a,- bn\/2 when 7 is even (because it satisfies that pattern for n = 2).

https://josmfs.net/2021/06/26/surprising-identity/
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Now we consider the “induction step” (iii).
Assume k is even and P(k) is true. Then
P(k)is (N2 = 1)* = a; — b2 = Va2 = N(2bP)

where @, — 1 = 2b,°.

Now (V2—1D*'= (\2-1D02-1)=(a,-bN2) V2= 1)= (ar + b)V2 — (a; + 2by)

so define i =ar+ by and by = a + 2b;

Then (V2= D" = V2 = by = V2 a1 = Vbt
Now 21,7 — 1= by,

if and only if (iff) 2a+ b’ — 1 = (a + 2by)*

iff 2al +2a b+ b)) — 1 =al + 4 ap by + 4b

iff 2a,° + 4 ap by + 2b — 1 = a> + 4 a; by + 4b

iff al’—1=2b/

which is true from P(k). Therefore P(k) = P(k+1) when k is even.
Assume k is odd and P(k) is true. Then
P(k)is (N2 — D)* =2 ap— by = V(2a) — b

where 24, — 1 = b°.

Now (V2—1D'= (\2-1'02-1)=(2a,—b) N2 -1)= Qay + by) — (a; + b2

so define 1 =2a;+ by and by, = ay+ by

Then (V2= D" = gy — b V2= Vag® = VQ2bird)
Now Q> —1=2b,°

iff Qag + b)* =1 =2a,+ by’

iff dail + 4 ar b+ b —1=2a’ +2 ay b+ bY)

iff dai + 4 ap b+ b — 1 =2a + 4 ay b+ 2b¢

iff 2a,°—1=b/

which is true from P(k). Therefore P(k) = P(k+1) when k is odd.

Therefore, we have shown P(1) is true, and for all k = 1, 2, 3, ... P(k) = P(k+1) is true.
Therefore, for all natural numbers 7, there is a natural number m, such that

P(n): (V2 - 1)'=Vm—-V(m-1)

18 true.
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Olympiad Solution

Again I present their solutions as images below (p.4). It turns out their Method I is what I
thought of, only with the addition of a neat observation that eliminated the even/odd separation of
cases. In skimming their solutions, there seemed to be a question whether some of the operations
resulted in a natural number. It didn’t seem that I had to worry about that in my solution.
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Olympiad Solution

31. Method I. First, we shall prove that for any natural =
there exist natural numbers @ and b such that

(1—V2)" = ya®— v (20%),
a?—2b% = (—1)".

Proof. For n =1 the theorem is valid, namely ¢ =b = 1.
Suppose that the theorem is valid for a certain n; then

(1—=v2)" = (1-y2)"(1-v2) = [Va*—V (263)](1—¥2)
= (@a—bv2)(1—v2) = (a+2b)—(a+b)V2
= V[(6+2b)*]—V[2(a+b)]
= Vai—v(2h),

where a, and b, are natural numbers and
al—2b% = (a+2b)2—2(a+b)2 = —a®-+2b?
= —(a®—2b%) = (—1)*+.

Thus the theorem is also valid for the exponent n+1. Hence we
infer by induction that the theorem is valid for any natural n.

The theorem involved in the problem is an immediate conelusion
from the theorem proved above; for, if » is an even number,

then
(V2—1)" = (1—¥2)" = ya*—y (2V%),

where a and b, and therefore also a2 and 252, are natural numbers
and a®—2b2 = 1. If n is an odd number, then

(V2—-1)" = —(1—V2)" = V(26%)—Va?,
where 262 and a2 are natural numbers and
202 —a? = — (@®—2b2) = — (—1) = 1.
Method II. Since

241y —1)e 2 1)"— (Y2—1)"
(y2_1p— Y2+ J;(vz ? (V24D 2(»/ r

and

we have

(V2—1) = Ym—VL,
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where

_[(v2+1>"+(v2—1)"]2_ (V2+1)" (V2 —1p"42

m = == ’

2 4

g [<v2+1>"—(v2—1>"]2= (V241 + (V2—1)"—2
2 4 ’

and consequently
m—k=1, ie k=m—1.

It remains to prove that m is a natural number. According to
Newton’s binomial formula we have

(V217 = 2+ (7) v (5) 2t (G) e

&

(21 = v2r—({) 2 () vame— (5 ovars
and thus

24-1)" 2—1)"
ym=PEEVHWETN o (5) tvay=as .

The above equality implies that, if n is even, yYm is a sum of
natural numbers, whence ym and m are natural numbers. If
n is odd, then ¥'m is a sum of numbers of the form ay2, where a
is a natural number; consequently ¥'m is the product of a natural
number and y2, whence m is a natural number. The theorem is
thus proved.

We shall give two more solutions of the problem, not so concise
as the above two but having the advantage of suggesting them-
selves quite naturally.

Method I1I. We shall use the induction method. The theorem
stating that for a natural n we have the equality

(V2—1)" = m—V (m—1)
is valid if » = 1; in this case m = 2. Suppose that it is valid for
a certain natural n; then

(V2—1p = (y2—1)"(y2—1) = [(¥Ym—¥ (m—1)](y2—1)
= VEm)+V (m—1)— Y [2(m—1)]— Ym
= Vv Em +v m—)P—y/{V2m—1)]+ym}*

(m—natural number)

and ,
[V @m) +V (m—1)P—{V[2(m—1)] 4 Vm}’
= Bm—1+2v/[2m (m—1)]} —{3m—2+2y/[2m (m—1)]} = 1.



We shall prove that [V2m-y (m—1)]* is a natural number.
Since
[V (2m) +V (m—DP = 3m—1+2y/[2m(m—1)],
it is sufficient to prove that 2m(m—1) is a square of a natural
number. It will be observed that (y2—1)" is a number of the
form ay2+4-b, where a and b are integers, since each term of the
expansion of (¥2—1)" according to Newton’s formula is either

an integer or the product of an integer and y2. Consequently,
by the induction hypothesis

Vm—y (m—1) = ay2+45.

By squaring, we obtain
2m—1—2y[m(m—1)] = 2a2+b2+2aby2.
It follows that
—2)/[m(m—1)] = 2aby2, 2m(m—1) = 4a?b?,
and thus the number 2m (m—1) is the square of the natural number
2‘%2%; have shown that the theorem is valid for the exponent

n—+1 if it is valid for the exponent n. And since it is valid for
n = 1, it is valid for any natural n.

REMARK. In the end part of the above proof we assumed the

following theorem:
If

A+By(C=K+LyM,
where A4, B, C, K, L, M are rational numbers, L # 0, and M is
not a square of a rational number, then

A=K and ByC=LyM.

The proof of this theorem is simple. The equality assumed implies
that

ByC =K—A+LyM.
Hence

B0 = (K—ApR+2(K—A) Ly M+ IL2M,

2K —A)LYM = BC—I2M—(K—A).

The right-hand side of the last equation represents a rational
number, and thus the left-hand side must also be equal to a ra-
tional number; under the assumption made regarding L and M,
this occurs only for K = 4.
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Method IV is actually a slight modification of method II. The

equality
(V2—1)" = ¥Ym—¥(m—1) (1)

is regarded as an equation with the unknown m. We solve this
equation:

ym = (¥2—1)"+vy(m—1),
m = (V2—1)"4+2(y2—1)"¥V(m—1)+m—1,
_ =21 1—(y2-1pP  (v2+1)"

YO =Sy T B Xvary
= SIV2HI— (V217
m—1 = Z[(V2H1P— (V2— 1),
m = = [(V21)— (V21941
— L L2174 (v2— 12141

= T L2417+ (V2—1) .

Substituting in equation (1) this value of m we find that it
satisfies that equation. The proof that itis a natural number has
been given in method II.



