Here is another imaginative geometry problem from Catriona Shearer’s twitter account.
“What fraction of the largest square is shaded?”
See the Cascading Squares Problem for a solution.
Here is another imaginative geometry problem from Catriona Shearer’s twitter account.
“What fraction of the largest square is shaded?”
See the Cascading Squares Problem for a solution.
The issue 7 of the Chalkdust mathematics magazine had an interesting geometric problem presented by Matthew Scroggs.
“In the diagram, ABDC is a square. Angles ACE and BDE are both 75°. Is triangle ABE equilateral? Why/why not?”
I had a solution, but alas, the Scroggs’s solution was far more elegant.
See the Chalkdust Triangle Problem for solutions.
This problem posted by Presh Talwalkar offers a variety of solutions, but I didn’t quite see my favorite approach for such problems. So I thought I would add it to the mix.
“Thanks to Nikhil Patro from India for suggesting this! What is the sum of the corner angles in a regular 5-sided star? What is a + b + c + d + e = ? Here’s a bonus problem: if the star is not regular, what is a + b + c + d + e = ?”
See Star Sum of Angles for solutions.
This was a nice geometric problem from Poo-Sung Park @puzzlist posted at the Twitter site #GeometryProblem.
“Geometry Problem 65: Given one square leaning on another, what is the ratio of the triangular areas A:B?”
See the Leaning Squares for a solution.
This is another UKMT Senior Challenge problem, this time from 2006.
“A toy pool table is 6 feet long and 3 feet wide. It has pockets at each of the four corners P, Q, R, and S. When a ball hits a side of the table, it bounces off the side at the same angle as it hit that side. A ball, initially 1 foot to the left of pocket P, is hit from the side SP towards the side PQ as shown. How many feet from P does the ball hit side PQ if it lands in pocket S after two bounces?”
Pool Partiers should have no difficulty solving this.
See More Pool for solutions.
Normally I don’t care for combinatorial problems, but this problem from Chalkdust Magazine by Matthew Scroggs seemed to bug me enough to try to solve it. It took me a while to see the proper pattern, and then it was rather satisfying.
“You start at A and are allowed to move either to the right or upwards. How many different routes are there to get from A to B?”
See the Chalkdust Grid Problem for a solution.
The following is a famous problem of Bachet as recounted by Heinrich Dörrie in his book 100 Great Problems of Elementary Mathematics:
“A merchant had a forty-pound measuring weight that broke into four pieces as the result of a fall. When the pieces were subsequently weighed, it was found that the weight of each piece was a whole number of pounds and that the four pieces could be used [in a balance scale] to weigh every integral weight between 1 and 40 pounds [when we are allowed to put a weight in either of the two pans]. What were the weights of the pieces?
(This problem stems from the French mathematician Claude Gaspard Bachet de Méziriac (1581-1638), who solved it in his famous book Problèmes plaisants et délectables qui se font par les nombres, published in 1624.)”
The problem has a nice solution using ternary numbers.
See the Weight Problem of Bachet for a solution.
(Update 4/10/2019) Continue reading
This is a fun little problem from the United Kingdom Mathematics Trust (UKMT) Senior Math Challenge of 2008.
“What is the remainder when the 2008-digit number 222 … 22 is divided by 9?”
(Hint: See The Barrel of Beer)
See A Multitude of 2s for a solution.
This is an interesting problem from the United Kingdom Mathematics Trust (UKMT) Senior Math Challenge of 2008.
“The length of the hypotenuse of a particular right-angled triangle is given by √(1 + 3 + 5 + … + 23 + 25). The lengths of the other two sides are given by √(1 + 3 + 5 + … + (x – 2) + x) and √ (1 + 3 + 5 + … + (y – 2) + y) where x and y are positive integers. What is the value of x + y?”
See the Right Triangle with Roots for a solution.
This turns out to be a fairly challenging driving problem from Longley-Cook.
“Mileage on the Thru-State Turnpike is measured from the Eastern terminal. Driver A enters the turnpike at the Centerville entrance, which is at the 65-mile marker, and drives east. After he has traveled 5 miles and is at the 60-mile marker, he overtakes a man operating a white-line painting machine who is traveling east at 5 miles per hour. At the 35-mile marker he passes his friend B, whose distinctive car he happens to spot, driving west. The time he notes is 12:20 p.m. At the 25-mile marker he passes a grass cutter traveling west at 10 miles per hour. A later learns that B overtook the grass cutter at the 21-mile marker and passed the white-line painter at the 56-mile marker. Assuming A, B, the painter and the grass cutter all travel at constant speeds, at what time did A enter the turnpike?”
See Turnpike Driving for a solution.