Triangle Acute-Angle Problem

(8 October 2018)

Jim Stevenson

Catriona Shearer Retweeted the following problem from Antonio Rinaldi @rinaldi6109 (https://twitter.com/rinaldi6109):

My little contribution to @Cshearer41 October 7, 2018
(https://twitter.com/rinaldi6109/status/1048892029248458752)

A point D is randomly chosen inside the equilateral triangle ABC . Determine the probability that the triangle ABD is acute-angled.

Solution

The first thing to notice is that so long as vertex D is inside triangle ABC , the angles at vertices A and B in triangle ABD will always be acute. Therefore, we only need to consider where the angle at D will be acute, that is, less than a right angle (90° or $\pi / 2$ radians). The boundary of such a region will be where D is exactly a right angle, which would be a semicircle with diameter AB (Figure 1).

If we assume (without loss of generality, wlog) that the equilateral triangle has sides of length 4 (and altitude $2 \sqrt{ } 3$), then the equations for the semicircle and line CB are as shown in Figure 1. The intersection of these curves is the point $(1, \sqrt{ } 3)$, the vertex of a small equilateral triangle with dimensions half those of the original (and therefore with area $1 / 4$ the original of $4 \sqrt{ }$). The area where angle D is acute is shown in green. We now compute its value.

Figure 1 Semi-circle area of exclusion

Figure 2 Area Computations
Figure 2 shows the computations for the various areas with the acute-angle region given by

$$
2 \sqrt{ } 3-2 \pi / 3
$$

so that the probability of the point D landing in this region of the large equilateral triangle is

$$
(2 \sqrt{ } 3-2 \pi / 3) / 4 \sqrt{ } 3=1 / 2-\pi / 6 \sqrt{ } 3 \approx .198 \approx 20 \%
$$

© 2019 James Stevenson

