Tag Archives: Alex Bellos

The Squirrel Puzzle

For a change of pace, here is an early puzzle from Alex Bellos in The Guardian.

“Happy New Year guzzlers!  Today’s first problem concerns squirrels. Have a nibble—it’s not too hard a nut to crack.

The Squirrel King has buried the Golden Acorn beneath one of the squares in this 6x6 grid. Three squirrels—Black, Grey and Red—are each standing on a square in the grid, as illustrated.

(Note: for the purposes of today, squirrels can speak, hear, read, count and are perfect logicians. They can also move in any direction horizontally and vertically, not just the direction these cartoons are facing. They all can see where each other is standing, and the cells in the grid are to be considered squares.)

The Squirrel King hands each squirrel a card, on which a number is written. The squirrels can read only the number on their own card. The King tells them: ‘Each card has a different number on it, and your card tells you the number of steps you are from the square with the Golden Acorn. Moving one square horizontally or vertically along the grid counts as a single step.’ (So if the acorn was under Black, Black’s card would say 0, Grey’s would say 4, and Red’s 5. Also, the number of steps given means the shortest possible number of steps from each squirrel to the acorn.)

The King asks them: ‘Do you know the square where the Golden Acorn is buried?’ They all reply ‘no!’ at once.

Red then says: ‘Now I know!’

Where is the Golden Acorn buried? …”

See the Squirrel Puzzle

Three Counting Puzzles

Here are three counting puzzles from Alex Bellos’s book, Can You Solve My Problems?  Bellos recalls the famous legend of the young Gauss in the 19th century who summed up the whole numbers from 1 to 100 by finding a pattern that would simplify the work.  Bellos also mentioned that Alcuin some thousand years earlier had discovered a similar, but different, pattern to sum up the numbers.  In presenting these three problems he said, “The lesson … is this: If you’re asked to add up a whole bunch of numbers, don’t undertake the challenge literally.  Look for the pattern and use it to your advantage.”

See Three Counting Puzzles

Ant Problem

This is one of Alex Bellos’s Monday Puzzles in the Guardian. I basically found the same solution as Bellos and his commenters, but wrote it up with what I thought were more explanatory graphics. The idea is that there is a bunch of ants on a stick who all walk a the same speed of 1 centimeter per second. When an ant runs into another ant, they both turn around and go the opposite direction. “So here is the puzzle: Which ant is the last to fall off the stick? And how long will it be before he or she does fall off?”  See the Ant Problem.