Movie Projector Problem

10 October 2019

webstockreview.net

Jim Stevenson

Solution

Figure 1 shows the situation for the problem. One important constraint is that the film is spooling from the projecting reel to the take-up reel at a constant rate v_{0}. That means in a small interval of time Δt, the same amount of film $\Delta \mathrm{s}$ is wrapped around the take-up reel as leaves the projecting reel. The segment of arc $\Delta \mathrm{s}$ of a circle is given by the product of the radius and the small increment of angle subtended by the arc. Since the two reels of film are different sizes, the radii and angles will be different, and will also

Figure 1 Reel to Reel change over time. So we have

Hence

$$
\begin{gathered}
\mathrm{R}(\mathrm{t}) \Delta \alpha(\mathrm{t})=\Delta \mathrm{s}=\mathrm{r}(\mathrm{t}) \Delta \beta(\mathrm{t}) \\
R(t) \frac{\Delta \alpha}{\Delta t}=\frac{\Delta s}{\Delta t}=v_{0}=r(t) \frac{\Delta \beta}{\Delta t}
\end{gathered}
$$

Passing to the limit as $\Delta t \rightarrow 0$, we get the instantaneous speeds at $\mathrm{t}=4$ minutes.

$$
R(4) \frac{d \alpha}{d t}=\frac{d s}{d t}=v_{0}=r(4) \frac{d \beta}{d t}
$$

We are told that at that instant, the ratio of the rotation rates of the two reels $(\mathrm{d} \beta / \mathrm{dt}) /(\mathrm{d} \alpha / \mathrm{dt})$ is $3 / 2$. Therefore, $\mathrm{R}(4) / \mathrm{r}(4)=3 / 2$ also.

Now we need to come up with an expression involving time. Since the film spools at a constant rate, we need to consider the amount of film left on the projecting reel. And since the thickness and the width of the film is the same on both reels, the length of film (and therefore time) on both reels is proportional to the areas of the film on the two reels, say A_{1} and A_{2} for the projecting and take-up reels respectively. (Note that the areas are the annuli obtained from subtracting the areas of the hubs from the areas of the filled reels.) If T is the time remaining on the projecting reel, then

$$
\frac{T}{4}=\frac{A_{1}}{A_{2}}=\frac{\pi\left(R^{2}-6^{2}\right)}{\pi\left(r^{2}-4^{2}\right)}
$$

Now $R=(3 / 2) r$. Replacing R with r would still leave r to consider. But then I realized $6=(3 / 2) 4$ as well and voila, terms in r disappear:

$$
\frac{T}{4}=\frac{R^{2}-6^{2}}{r^{2}-4^{2}}=\frac{\frac{9}{4}\left(r^{2}-4^{2}\right)}{\left(r^{2}-4^{2}\right)}=\frac{9}{4}
$$

Thus $\mathrm{T}=9$ minutes, the time remaining. Amazing!

References

[1] Stueben, Michael, "Brain Bogglers," Discover, March 1987

