Quadrangle in Parallelogram

Here is another problem from the Quantum magazine, only this time from the “Challenges” section (these are expected to be a bit more difficult than the Brainteasers).

“A quadrangle is inscribed in a parallelogram whose area is twice that of the quadrangle. Prove that at least one of the quadrangle’s diagonals is parallel to one of the parallelogram’s sides. (E. Sallinen)”

See Quadrangle in Parallelogram

Three Counting Puzzles

Here are three counting puzzles from Alex Bellos’s book, Can You Solve My Problems?  Bellos recalls the famous legend of the young Gauss in the 19th century who summed up the whole numbers from 1 to 100 by finding a pattern that would simplify the work.  Bellos also mentioned that Alcuin some thousand years earlier had discovered a similar, but different, pattern to sum up the numbers.  In presenting these three problems he said, “The lesson … is this: If you’re asked to add up a whole bunch of numbers, don’t undertake the challenge literally.  Look for the pattern and use it to your advantage.”

See Three Counting Puzzles

The Track Problem

Again we have a puzzle from the Sherlock Holmes puzzle book by Dr. Watson (aka Tim Dedopulos).

“Our pursuit of the dubious Alan Grey, whom we encountered during The Adventure of the Third Carriage, led Holmes and myself to a circular running track where, as the sun fell, we witnessed a race using bicycles. There was some sort of substantial wager involved in the matter, as I recall, and the track had been closed off specially for the occasion. This was insufficient to prevent our ingress, obviously.

One of the competitors was wearing red, and the other blue. We never did discover their names. As the race started, red immediately pulled ahead. A few moments later, Holmes observed that if they maintained their pace, red would complete a lap in four minutes, whilst blue would complete one in seven.

Having made that pronouncement, he turned to me. ‘How long would it be before red passed blue if they kept those rates up, old chap?’

Whilst I wrestled with the answer, Holmes went back to watching the proceedings. Can you find the solution?”

See the Track Problem

Fallen Clock Puzzle

This is a nice variation on the typical clock problem posed by Cary Mallon and retweeted by Henk Reuling:

“This clock has fallen on the floor, and unfortunately, there is no indication which way ‘up’ the clock should hang.  However, both hands are pointing precisely at the [adjacent] minute marks.  You can now work out what the time is.”

See the Fallen Clock Puzzle.

Lopsided Hexagon Problem

Here is another good problem from Five Hundred Mathematical Challenges:

“Problem 100.  A hexagon inscribed in a circle has three consecutive sides of length a and three consecutive sides of length b. Determine the radius of the circle.”

This problem made me think of the Putnam Octagon Problem.  Again my approach might be considered a bit pedestrian.  500 Math Challenges had a slightly slicker solution.

See the Lop-sided Hexagon Problem