Monthly Archives: March 2021

Wine Into Water Problem

Here is a challenging problem from the 1874 The Analyst.

“A cask containing a gallons of wine stands on another containing a gallons of water; they are connected by a pipe through which, when open, the wine can escape into the lower cask at the rate of c gallons per minute, and through a pipe in the lower cask the mixture can escape at the same rate; also, water can be let in through a pipe on the top of the upper cask at a like rate. If all the pipes be opened at the same instant, how much wine will be in the lower cask at the end of t minutes, supposing the fluids to mingle perfectly?

—  Communicated by Artemas Martin, Mathematical Editor of Schoolday Magazine, Erie, Pennsylvania.”

I found the problem in Benjamin Wardhaugh’s book where he describes The Analyst:

“Beginning in 1874 and continuing as Annals of Mathematics from 1884 onward, The Analyst appeared monthly, published in Des Moines, Iowa, and was intended as “a suitable medium of communication between a large class of investigators and students in science, comprising the various grades from the students in our high schools and colleges to the college professor.” It carried a range of mathematical articles, both pure and applied, and a regular series of mathematical problems of  varying difficulty: on the whole they seem harder than those in The Ladies’ Diary and possibly easier than the Mathematical Challenges in the extract after the next. Those given here appeared in the very first issue.”

I tailored my solution after the “Diluted Wine Puzzle”, though this problem was more complicated.  Moreover, the final solution must pass from discreet steps to continuous ones.

There is a bonus problem in a later issue:

“19.  Referring to Question 4, (No. 1): At what time will the lower cask contain the greatest quantity of wine?

—Communicated by Prof. Geo. R. Perkins.”

Answer.

See the Wine Into Water Problem for solutions.

Equitable Slice Problem

This is another Brainteaser from the Quantum math magazine .

“How can a polygonal line BDEFG be drawn in a triangle ABC so that the five triangles obtained have the same area?”

I found this problem rather challenging, especially when I first tried to solve it analytically (using hyperbolas).  Eventually I arrived at a procedure that would accomplish the result. (revised)

See the Equitable Slice Problem  (revised)

(Update 9/22/2021)  I goofed.  I erroneously and foolishly thought Quantum had not solved the problem.  Upon a closer reading I see what they were getting at and revised the posting.

Train Wreck Puzzle

I thought it might be interesting to explore the mathematics of a common problem with a store-bought HO model train set that contains a collection of straight track segments and fixed-radius curved track segments that form a simple oval.  Invariably an initial run of the train has it careening off the track when the train first meets the curved segment after running along the straight track segments.

Why is that?  Well of course the train is going too fast.  But even if it slows down enough not to fall off the curve, it still jerks unstably and may derail when it first reaches the beginning of the curve.  What is going on?

See the Train Wreck Puzzle

(Updates 9/18/2022, 10/20/2022)  Others on Circular Looping Roller Coasters Continue reading