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I thought it might be interesting to explore the mathematics of 

a common problem with a store-bought HO model train set that 

contains a collection of straight track segments and fixed-radius 

curved track segments that form a simple oval (Figure 1).  

Invariably an initial run of the train has it careening off the track 

when the train first meets the curved segment after running along 

the straight track segments.   

Why is that?  Well of course the train is going too fast.  But 

even if it slows down enough not to fall off the curve, it still jerks 

unstably and may derail when it first reaches the beginning of the curve.  What is going on?    

Math 

 
 

Figure 1  Model Train Layout with Problem Figure 2  Parameterized Layout 

We will first create a mathematical model of the problem.  The track layout is determined by the 

distance d of the straight tracks and radius r of the curved tracks (Figure 2). We have the distance s 

traveled around the curves is given by s = rθ.  Since the train is moving at constant speed v0 along the 

track, the speed along the curves is given by 

v0 = ds/dt = r dθ/dt = r θ'(t) 

Therefore, the angular velocity is also constant and given by 

dθ/dt = θ'(t) = v0/r 

And so the general scheme for the time evolution of θ is 

θ(t) = (v0/r) t 

Given that the track consists of straight and curved segments, we define times marking the 

transitions between these segments, starting with the bottom straight track, as t0, t1, t2, t3, t4, given by 

   t0 = 0 

d = v0 t1     t1 = d /v0 

π = (v0/r)(t2 – t1)   t2 = ππππr/v0 + t1 

d = v0 (t3 – t2)   t3 = d /v0 + t2 

π = (v0/r)(t2 – t1)   t4 = ππππr/v0 + t3 
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The following table shows the parameterization of the position, velocity, and acceleration vectors 

shown in Figure 2 corresponding to the colored time intervals for the straight and curved sections of 

the track layout. 
Table 1  Components of Position, Velocity, and Acceleration Vectors 

      

  t0 = 0 t1 t2 t3 t4

   θ(t) = (v0/r)(t – t1) – π/2  θ(t) = (v0/r)(t – t3) + π/2 

x(t) v0 t d + r cos θ(t) d – v0 (t – t2) r cos θ(t) 
P(t) 

y(t) –r r sin θ(t) r r sin θ(t) 

x'(t) v0 –r sin θ(t) θ'(t) = –v0 sin θ(t) –v0 –r sin θ(t) θ'(t) = –v0 sin θ(t) 
v(t) 

y'(t) 0 r cos θ(t) θ'(t) = v0 cos θ(t) 0 r cos θ(t) θ'(t) = v0 cos θ(t) 

x''(t) 0 – v0 cos θ(t) θ'(t) = –v0
2
/r cos θ(t) 0 – v0 cos θ(t) θ'(t) = –v0

2
/r cos θ(t) 

a(t) y''(t) 0 – v0 sin θ(t) θ'(t) = – v0
2
/r sin θ(t) 0 – v0 sin θ(t) θ'(t) = – v0

2
/r sin θ(t) 

From a vector point of view we have unit vectors in the direction of the vector r and 

perpendicular to r given by 

u(t) = cos θ(t) i + sin θ(t) j 

u⊥⊥⊥⊥(t) = –sin θ(t) i + cos θ(t) j 

and so can write the position vector P for the right-hand curve as  

P(t) = d + r(t)   where   r(t) = r u(t) 

From Table 1 we have 

P'(t) = v(t) =  v0 u
⊥⊥⊥⊥(t) 

P''(t) = a(t) = – v0
2
/r u(t) 

We are interested in what happens at time t1 where the straight track transitions to the curved 

track. 

Continuity of P.  P(t) is continuous on the closed interval [t0 , t1] and continuous on the closed 

interval [t1 , t2] because θ(t), cos θ(t), and sin θ(t) are.  Now P(t1) = d i – r j and as t→ t1
–
, P(t) → d i – 

r j, and as t→ t1
+
, P(t) → d i – r j also, since θ(t) → –π/2 means cos θ(t) → 0 and sin θ(t) → –1.  So 

P(t) is continuous at t1 and thus on the joined interval [t0 , t2].  (See Figure 2.) 

Continuity of v.  Moreover v(t) is also continuous on the closed intervals [t0 , t1] and [t1 , t2] 

because θ(t), cos θ(t), and sin θ(t) are.  Now v(t1) = v0 i and as t→ t1
–
 , v(t) → v0 i, and as t→ t1

+
, v(t) 

→ v0 i also, since again θ(t) → –π/2 means cos θ(t) → 0 and sin θ(t) → –1.  So v(t) is continuous at t1 

and thus on the joined interval [t0 , t2].   

Discontinuity of a.  Now a(t) is also continuous on the open intervals (t0 , t1) and (t1 , t2) omitting 

t1 because θ(t), cos θ(t), and sin θ(t) are.  But it is not continuous at t1.  As t→ t1
–
 , a(t) = 0 → 0, but 

as t→ t1
+
, a(t) → v0

2
/r j, since θ(t) → –π/2 means cos θ(t) → 0 and sin θ(t) → –1.  Therefore,  
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so a(t) approaches different limits as t approaches t1 from the left or the right (and we haven’t decided 

on what to define a(t1) either). 
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Physics 

Acceleration on curve.  What is the effect of this sudden acceleration on the train?  Let’s 

consider first the acceleration of the train while it is on the curve.  From physics we have F = ma, that 

is, every acceleration of an object of mass m is associated with a force.  So from Figure 2 we see that 

the acceleration a is directed radially toward the center of the semicircular curve.  Such a force is 

called a centripetal force.  In our case it will be given by  

F = – mv0
2
/r u 

where u is the unit vector in the direction of the radial vector r to the position of the train on the curve 

(m is a little vague at the moment).   

To get a feel for what is happening, imagine the railroad 

car on the curve is actual size and a person is standing on its 

floor inside (Figure 3).  Suppose the person has a mass m and 

thus weight mg where g is the acceleration of gravity.  Then 

the centripetal force of the curve on the car (red arrow) is felt 

by the feet of the standing person.   However, their head keeps 

trying to go in a straight line ahead.  To see this, imagine 

another observer standing in the tracks looking at the 

instantaneous cross-section of the car.  That observer will see 

the passenger’s head going straight forward but their feet 

moving to the left.  The passenger in the car, whose reference 

is only the floor of the car, will see their feet implanted 

unmoving on the floor but feel their head trying to go to the 

right (with the same force as the grounded observer sees the feet going to the left).  This sensation by 

the passenger of their head being forced to the right is called the centrifugal force, but is not a real 

force.  It is merely the result of a change of reference coordinate system (from a fixed system to a 

rotating one); no actual force is being applied to the passenger’s head.  The only real force is the 

centripetal force moving the passenger’s feet in a curve.  Nevertheless, if the passenger does not do 

something, they will fall over.  In other words, the passenger needs to have their head subject to the 

centripetal force as well, such as holding onto the sides of the car. 

Of course, the whole train car is being subject to centrifugal forces, but the rigid sides transmit 

the centripetal force throughout (Figure 4).  There is the issue that the force is actually only applied to 

the outer wheels, and so considerations of torques are involved that we will mention briefly.  One way 

to mitigate the torque is to angle the lever arm against the force (torque is perpendicular to the lever 

arm) and add a little counter torque.  This is done by banking the roadbed to allow some of the weight 

of the car to be added to the centripetal force (Figure 5). 

 
 

Figure 4 Figure 5 

 
Figure 3 
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Abrupt change of acceleration.  Given that the curved tracks in the train set are fixed, so that we 

cannot widen the radius of curvature and thus lessen the centrifugal force, our only alternative is to 

slow down the train—reduce the speed v0.  Actually, this makes a big difference, more than 

increasing the radius of curvature, since the effect of the speed goes as its square. 

Now consider, not the situation on the curve, but what happens when the train transitions from the 

straight track to the curved track.  Because of the discontinuity of the acceleration, we go from no 

force to a sudden impulse force of mv0
2
/r.  In other words, the sudden centrifugal force whacks the 

train sideways—the acceleration is abruptly accelerating from zero to mv0
2
/r.  Given the rigidity of 

the track geometry in the train set, there is nothing we can do, except again try to keep the speed v0 

small enough so the impulse force is not too great. 

Easement. In a “real” model train 

layout, these problems can be 

addressed.  Besides being able to bank 

the road bed (which the model 

railroaders seem to call 

“superelevation” ([1])) they remove 

the abrupt change of the radius of 

curvature of the track from the straight 

segments to the curved segments.  

They “smooth” the transition with 

what they call an “easement.”([1], [2])  

(In mathematics a smooth function is 

one that is infinitely differentiable 

(often called “C-infinity” C
∞
).

1
  Thus it 

has continuous derivatives of all 

orders.  A curve defined by such a 

function would not have a 

discontinuous second derivative 

leading to a discontinuous 

acceleration.)  The model railroaders 

approximate such a curve for their 

easement using an offset technique 

(Figure 6).  A video on model railroad 

easement and banking construction 

can be found at ([3]). 
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Figure 6  Model Railroad Easement Construction ([2]) 


