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Here is a seemingly simple problem from Futility Closet ([1]). 

A quickie from Peter Winkler’s Mathematical Puzzles, 2021: 

Can West Virginia be inscribed in a square? That is, is it possible to 

draw some square each of whose four sides is tangent to this shape? 

Technically we might rephrase this as, can we inscribe a flat 

map of West Virginia in a square, since the boundary of most states 

is probably not differentiable everywhere, that is, has a tangent 

everywhere.   

But the real significance of the problem is that it is an example 

of an “existence proof”, which in mathematics refers to a proof that asserts the existence of a solution 

to a problem, but does not (or cannot) produce the solution itself.  These proofs are second in delight 

only to the “impossible proofs” which prove that something is impossible, such as trisecting an angle 

solely with ruler and compass. 

Here is another classic example (whose origin I don’t recall).  Consider the temperatures of the 

earth around the equator.  At any given instant of time there must be at least two antipodal points that 

have the same temperature.  (Antipodal points are the opposite ends of a diameter through the center 

of the earth.) 

Solution 

West Virginia map.  I’ll quote the Futility Closet solution here, since it is the same one I was 

thinking of.  

Yes. Start by drawing an arbitrary rectangle that hugs the state. Now rotate that rectangle, 

adjusting its dimensions as it turns to keep each side in contact with the shape. If you turn it through 

90 degrees, then the “height” and “width” will have traded places: What had been the shorter side of 

the rectangle is now the longer. So at some point the two must have had the same value. 

The key here is that the circumscribing rectangle is being rotated continuously.  At first this might 

not seem possible if the outline of the state is so 

jagged or in fact a fractal boundary.  To see how 

this might work, consider a rectangle itself and 

ask if it can be inscribed in a square. 

Figure 1 shows a rectangle whose horizontal 

sides are colored green and vertical sides red.  It 

shows successively rotated rectangles that 

continue to pass through the corners of the 

original rectangle.  They expand in area until they 

begin to shrink back to the size of the original 

rectangle, only now the horizontal sides are red 

and the vertical sides are green.  Notice by 

symmetry that the maximum rectangle is a square 

whose diagonals are parallel to the original rectangle.  In this case we have actually constructed the 

desired square.  But just by the fact of the continuous motion from the initial to the final rectangle we 

 

 
Figure 1 
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know that there must have been an intermediate rectangle with sides the same length, that is, a 

square.
1
 

Common antipodal point temperature. (See 

Figure 2)  Let P be an arbitrary point on the equator 

and let its temperature be T.  Let P' be its 

corresponding antipodal point with temperature T'.  

Then P' is 180º of longitude from P.  Let D(P) = T – T' 

be the temperature difference.  Start at some point P0 

and parmeterize P by its longitudinal distance θ from 

P0 so that θ ranges from 0 to 180º while P moves from 

P0 to its antipodal point P0'.  If T0 = T0', then we are 

done.  Assume T0 > T0'. (The other case is treated the 

same.)  Then D(P0) = D(P(0)) = T0 – T0' > 0.  Clearly 

nearby points have similar temperatures, so we can 

assume as P moves along the equator that D(P) 

changes continuously.  When P reaches the antipodal point P0' of the original point P0, the difference 

has reversed and is now negative, that is, D(P0') = D(P(180º)) = T0
'
 – T0 < 0.  Therefore, there must be 

some point P* = P(θ*) between P0 and P0' (0 < θ* < 180º) where D(P*) = 0, that is, T* = T*'. 

This seems intuitively clear, but it is also the result of the powerful Intermediate Value Theorem 

for continuous single variable functions in calculus.   

Intermediate Value Theorem (IVT) 

If f : [a, b] → IR is a continuous real-valued function on 

the closed interval [a, b], then f takes on all values 

between f(a) and f(b), that is, if f(a) ≠ f(b), say f(a) > f(b), 

and if d is such that f(a) > d > f(b), then there is a number 

c, a < c < b, such that f(c) = d (Figure 3). 

This result can be expanded to say f takes on all values 

between its maximum M and minimum m on [a, b].  (Just 

find the new values a, b where f equals the max and min, 

possibly relabeling so that a < b.)   

It turns out that the IVT is equivalent to the case we 

treated in the antipodal point problem.  That is, if g is 

continuous on the closed interval [a, b] and g(a) > 0 and g(b) < 0, then there is a number c, a < c < b, 

such that g(c) = 0.  (Just take g(x) = f(x) – d.) 

This is a prime example of an existence proof where we know such a number exists but do not 

necessarily know what it is. 

(A proof of the IVT can be based on the ideas presented in my post on Point Set Topology ([3]).  

We set up a nested set of closed intervals [ak, bk], each half the length of it predecessor, where 

f(ak) > d > f(bk).  Just as in the case of the nested intervals that converged on √2, these intervals 

converge on a unique point c in (a, b).  So f continuous means lim k→∞ f(ak) = f(c) ≥ d ≥ f(c) = 

lim k→∞ f(bk) and so f(c) = d.) 

 

                                                      
1
  Burkard Polster at his Mathologer Youtube website ([2]) has a nice explicit proof of the existence of the 

circumscribing square using the ideas we discuss subsequently.  His principal interest in the video, however, 

is to look at a two-dimensional analog of the puzzle, called “the wobbly table problem”. 

 
Figure 2 

 
Figure 3 
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Fixed-Point Theorem (FPT) 

A fabulous application of the IVT is a 

fixed-point theorem for single real variables.  

Here is a context for such theorems.  Suppose 

you lay an infinitesimally thin string along the 

edge of a 12-inch ruler.  Now pick it up and 

wad it into a tangle and lay it back down along 

the ruler, still in an infinitesimally thin line 

(Figure 4).  (That is, keep the situation one-

dimensional.)  Then some point in the wadded 

string has to lie over its original position along 

the ruler.  A different wadding produces a 

different “fixed point”.  There is no way to wad 

the string so that all the points on the string 

move to different locations. 

This is easily shown in Figure 5 (based on 

the excellent 1966 introductory article by 

Marvin Shinbrot [4]).  If we let x represent the 

starting positions along the ruler for the string 

and y the ending positions, then the graph of 

the function y = f(x) relating the starting 

positions to the ending positions lies in the 

12"x12" square.  Since the string is not broken, 

the function f is continuous.  A fixed-point for 

this function is when x = f(x), or equivalently 

when the graph of the function y = f(x) 

intersects the graph of the function y = x, which 

is a straight line from (0, 0) to (12, 12).  It is intuitively obvious that we cannot draw a continuous 

curve from the left edge of the 12"x12" square to the right edge without crossing the diagonal.   

Analytically, this is just an application of the IVT where g(x) = f(x) – x.  If f(0) ≠ 0 and f(12) ≠ 12, 

then g(0) = f(0) – 0 > 0 and g(12) = f(12) – 12 < 0.  By the IVT, there is some x*, 0 < x* < 12, such 

that g(x*) = 0, and so f(x*) = x*.  

So we have a general one-dimensional fixed-point theorem: 

Fixed-Point Theorem.  If f : [a, b] → [a, b] is a continuous real-valued function on the closed 

interval [a, b], then there exists a number c in [a, b] such that f(c) = c. 

Higher Dimensional Spaces 

A two-dimensional analog is Brouwer’s fixed-point theorem (B-FPT) ([5]): 

Brouwer Fixed-Point Theorem.  Every continuous mapping of the closed disk D into itself,  

f : D → D, has a fixed-point, that is, there is a point p in D such that f(p) = p. 

A closed disk consists of its circular boundary and all points inside.   

A physical example might be the action of stirring a cup of coffee that keeps the surface of the 

coffee on the surface.  At any instant of time some circulated point has to be at its original location.  

Different instants of time may yield a different fixed point, but there is no way to stir the coffee so 

 
Figure 4  Wadding string along ruler 

 
Figure 5  Proving there exists a fixed-point 
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that all the points move to a different location.  (Apparently this was Brouwer’s original inspiration. 

([5])) 

There are more general results.  For example, any continuous mapping of a closed, bounded, 

convex, set into itself must have a fixed point, where “closed” means it contains all its limit points 

([3]), “bounded” means all its points are less than a fixed distance from the origin, and “convex” 

means if two points are in the set, then so are all the points on the line segment joining the points.  In 

fact, this statement holds for spaces of any dimension, even infinite dimensional ones (Banach spaces: 

Schauder’s fixed-point theorem).  

Rectangles are also closed, bounded, convex 

sets and provide additional examples.  James 

Tanton ([6]) illustrates the theorem with the idea of 

shrinking a map of the US and dropping it inside 

the larger, original map (Figure 6), even possibly 

crumpling it in the process.  Some point in the 

smaller map has to lie over its corresponding 

location on the larger map.  Tanton presents one of 

the standard proofs of the B-FPT using Sperner’s 

Lemma, which has a number of fascinating 

applications in its own right. 

B-FPT Proof.  We shall sketch a proof of B-FPT following Shinbrot ([4]) and Brouwer’s own, 

original ideas, though slightly modernized. 

We proceed by contradiction.  Suppose there is no 

fixed point.  Then for every point P in D, f(P) ≠ P.   

Therefore f(P) – P defines a non-zero vector for all P in 

D.  If we attach the vector f(P) – P to each of its 

corresponding points P, then the distribution of these 

vectors over D is called a vector field.  Since f is 

continuous, f(P) – P will be continuous, that is, nearby 

points P, P' are sent to nearby images f(P), f(P'), or 

alternatively the lengths and direction of the vectors vary continuously (Figure 7). 

Now consider the behavior of the f(P) – P vector field restricted to the boundary circle of the disk 

(Figure 8).  Each vector attached to the circle has to point inwards, so that as one traverses the circle 

 
Figure 6 

 
Figure 7 

   
Figure 8 Figure 9 Figure 10 
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in a counter-clockwise direction, the vectors also rotate counter-clockwise.  This is captured in the 

inset where each vector is translated to a copy whose tails all lie at the origin.  Then the heads of the 

vectors trace out a continuous, closed curve that surrounds the origin, thus making a complete circuit.  

In this way the corresponding vectors are seen to make one positive (counterclockwise) rotation as the 

tails of the original vectors traverse the circle in a counterclockwise direction. 

Now consider an infinitesimally smaller concentric circle inside the boundary circle of the disk D 

(Figure 9).  By continuity the minimally changed vectors must still make one full rotation, even if 

they are now not all pointing inside the new circle.  As we continue to shrink the concentric circles, 

the rotation of the vector field along those circles must remain constant, namely, +1.   

But when the concentric circle is very small (Figure 10), the nearby vectors should all be pointing 

in almost the same direction and so make no rotation around the circle, that is, have rotation 0.  This 

contradicts that the rotation should be +1.  Therefore, our assumption of no fixed point is false. 

Discussion. If we consider again the closed curves defined by 

the heads of the rotating vectors, we see what is happening.  In 

order to go from the starting curve in Figure 8 to the ending curve 

in Figure 9, the curves have to continuously shrink without 

breaking (Figure 11).  But at some point they will hit the origin 0.  

That means some vector must be of zero length (and f(P) = P), 

contrary to our assumption.  In fact, there is a theorem that 

captures this idea ([7] p.114): 

Theorem 31.1. Let V be a continuous vector field defined on a 

disk D in the plane and such that Vp is not the zero vector for any 

point p on the boundary circle C of D. If the index of V around C, 

I(V, C), is not zero, then there is at least one point p in D whose 

vector Vp is zero. 

The index of V around C, I(V, C), is the rotation of the vector field V around C¸ or equivalently the 

number of windings of the closed curve of tail points of the vector around the origin—called the 

winding number, also known as the degree of the mapping f.  The continuous shrinking of the curves 

from one instance to another is called a homotopy of the curves and is one of the ideas introduced by 

Brouwer (along with the degree of a map).  It two homotopic closed curves can be shrunk into each 

other without passing through the origin then they must have the same winding number.  In general 

the winding number can be defined about any point, not just the origin. 

Differential Equations 

Fixed points and rotations of vector fields have applications to differential 

equations.  Consider a pendulum of length l that swings through an  angle θ 

measured positively from the vertical in the counter-clockwise direction 

(Figure 12).  Then its (second order) differential equation of motion is given 

by  

 0sin
2

2

=+ θ
θ

l

g

dt

d
 (1) 

If the pendulum is let go at say an angle of –π/4, it will swing over to 

+π /4 under the accelerating force of gravity and then back again, oscillating 

forever if there is no friction.  If the pendulum is let go at θ = 0, it will remain 

motionless.  A slit nudge will barely move it from this position, so it is at a 

stable equilibrium point.  Similarly, if the pendulum is started at θ = π, it will 

also not move—another equilibrium point—but this time a slight nudge will 

 
Figure 11 

 
Figure 12  Pendulum 
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send it swinging around 2π until it comes to rest again.  So this is an unstable equilibrium point.  Now 

if the pendulum is started at any angle but with a strong push that sends it spinning around, it will 

keep spinning (in a frictionless environment).   

All these motions can be 

described in a “phase space 

diagram” of positions and 

velocities of the pendulum, that 

is, coordinates (θ, v) where v = 

dθ/dt.  We reformulate the 

second order differential equation 

(1) as a first order vector 

differential equation.  Let ϕϕϕϕ be 

the vector-valued function of 

time given by ϕϕϕϕ(t) = (θ(t), v(t)) 

where v = dθ/dt.  Let F(θ, v) be a 

vector field in the phase space given by  

F(θ, v) = (v, (g/l) sin θ). 

Then the differential equation (1) for the pendulum becomes 
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This is illustrated geometrically in Figure 13.   

The actual phase space for the pendulum is shown in Figure 14 where we also include some local 

rotations of the vector field F.  The large blue dots represent equilibrium points (where both the speed 

and acceleration of the pendulum are zero), which are zeros of the vector field F, and consequently 

zeros of the derivative dϕϕϕϕ/dt, called critical points of ϕϕϕϕ. 

 

Figure 13  Differential equation ),(/ vdtd θϕ F=  in (θθθθ, v) phase space 

 

Figure 14  (θθθθ, v) Phase space diagram for a pendulum 
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Notice that in the region of the phase space in which the vector field has zero rotation there are no 

critical points.  But in the regions with non-zero rotations, there are critical points or zeros of the 

vector field, just as stipulated by Theorem 31.1 above.  The interesting property is that the vanishing 

points of the vector field with positive rotation are stable equilibria for the pendulum and those with 

negative rotation are unstable equilibria.  Thus the topological properties of the phase space can yield 

information about the solutions without having to actually solve the equations.  This is especially 

important for nonlinear differential equations, such as the pendulum, for which there are often no easy 

solutions. 

 A modern discussion of these ideas, and more, can be found in John Roe’s Winding Around: The 

Winding Number in Topology, Geometry, and Analysis (2015) ([8]). 

Function Spaces 

There is another way of applying fixed point properties to differential equations by looking at 

corresponding integral equations, as can be seen by the following elementary example.  Consider the 

nonlinear differential equation 

),( yxf
dx

dy
=  

with initial condition y0 = y(x0) where f(x, y) is continuous in some plane region G containing (x0,y0).  

This equation is equivalent to the following integral equation: 

+=
x

x
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We consider a space C of continuous functions φ defined on an appropriate closed subset of G 

containing (x0, y0), and define the mapping A: C → C where A is given by  

+=
x
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0

))(,())(( 0 φφ . 

Our original differential equation, then, will have a solution when A has a fixed point in C, that is, 

when Aφ = φ  for some φ in C.  Thus in a certain sense we have established a correspondence between 

the analytic properties of differential equations and the topological properties of operators on a space 

of functions, as we introduced in the Point Set Toplogy posting.   An advanced discussion of these 

ideas can be found in Krasnosel’sky ([9]).  But there are a host of references on the subject now that 

didn’t exist when I began studying this subject. 

Over the years I have found the ideas in this essay to be some of the most wonderful things I ever 

encountered in mathematics.  The cross fertilization of the geometry of fixed-points and rotations of 

vector fields with the topology of function spaces and the solutions of nonlinear differential equations 

is the essence of mathematics.  The added spice is the sauciness and impertinence of existence 

theorems that do not construct the solution. 
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