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Three Coffin Problems   
(7 September 2018) 

Jim Stevenson 

I had vaguely remembered about these problems, but a video by GoldPlatedGoof (Nakul Dawra) 

reminded me with three excellent examples.([1])  Here is a description of the Coffin Problems from 

Tanya Khovanova, one of the students involved ([2]):  

The Mathematics Department of Moscow State University, the most prestigious mathematics 

school in Russia, was at that time [1975] actively trying to keep Jewish students (and other 

“undesirables”) from enrolling in the department. One of the methods they used for doing this was 

to give the unwanted students a different set of problems on their oral exam. I was told that these 

problems were carefully designed to have elementary solutions (so that the Department could 

avoid scandals) that were nearly impossible to find. Any student who failed to answer could easily 

be rejected, so this system was an effective method of controlling admissions. These kinds of 

math problems were informally referred to as “Jewish” problems or “coffins”. “Coffins” is the 

literal translation from Russian; they have also been called “killer” problems in English. 

Of the three problems selected by Dawra I was able to solve the first two (more or less along the 

lines given by Dawra), but after playing with it for some time, I could not solve the third problem and 

had to look at Dawra’s solution.  The third problem seemed to be a premier example of a difficult-to-

think-of-solution that was nevertheless exceedingly simple—once you saw it.   

More extensive information and history of the Coffin Problems can be found at Tanya 

Khovanova’s website entry ([3]), including Coffin problems from other mathematicians and 

numerous links to other material. 
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First, I will give the problems and then the solutions. 

Problem 1 

  
Figure 1 Figure 2 

You are given two vertical, parallel lines.  The goal is to divide the smaller line into six equal-

length intervals (Figure 1) using only straight lines and their intersections (Figure 2). 
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Problem 2 

  
Figure 3 Figure 4 

In this problem you are given two parallel horizontal lines and an arbitrary monotonically 

increasing curve between them (Figure 3).  Dawra characterizes this curve by saying a tangent arrow 

will always point between East and North on the compass.  A vertical line is then drawn between the 

two parallel lines cutting the curve and forming two areas, one to the left below the curve and one to 

the right above the curve (Figure 4).  This vertical line can move back and forth, changing the sizes of 

the two areas.  The goal is to find (for any arbitrary such curve) the location of the vertical line that 

minimizes the sum of the two areas. 

I really like this problem.  There is something quite elegant about it. 

Problem 3 

  

Figure 5 Figure 6 

You are given an equilateral triangle, an arbitrary point inside, and three lines joining the point to 

the three vertices (Figure 5).  If the three lines are rearranged into a triangle, what are the interior 

angles of this new triangle using the angles x and y in the original figure? (Figure 6). 

I had actually seen this problem before on Presh Talwalkar’s website, Mind Your Decisions, and 

could not solve it then.  On the face of it, there just seems to be no obvious connection between the 

two figures.  But once you see the solution, it is practically trivial. 
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 Solution to Problem 1 

  

Figure 7  Initial Step Figure 8  Shear Invariance Figure 9  Initial Attempt 

The only obvious points to join initially with straight lines are the end points of the line segments 

making a triangle (Figure 7).  Also, parallel lines in triangles can be associated with proportional 

sides and so may provide a way to solve the problem.  The easiest triangles to work with are right 

triangles and isosceles triangles, so I wanted to shift the problem to such figures.  But I had to make 

sure this would not change the problem.   

Figure 8 shows a skew triangle can be “sheared” to an isosceles triangle by moving its top vertex 

parallel to its base.  Similar triangles are preserved.  That is, in the skew triangle we have (via similar 

triangles) b2 / B = h / H.  But since the altitudes are preserved via the shearing, we also have b1 / B = 

h / H, so that b1 = b2.  We will call this preservation of lengths under shearing, shear invariance.   

Figure 9 shows my initial attempt at a solution by drawing the only other obvious lines 

connecting intersections.  The blue lines produced a new intersection, which when joined by a line 

from the vertex to the base, “looked” like a perpendicular bisector.  But I could not see easily how to 

prove it.  I kept slipping into assuming what I wanted to prove, that is, I was beguiled by the picture 

and had difficulty establishing rigorous statements.   

I thought this intersection property was very interesting and began drawing a succession of 

crossing lines.  First I drew a line parallel to the base through the original intersection of the blue 

lines.  Then I connected the base vertices to the new line endpoints to form more intersections.  I kept 

   
Figure 10  Crossing Lines Figure 11  1

st
 Equal Segments Figure 12  2

nd
 Equal Segments 
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doing this with more 

horizontal lines joined by 

intersecting lines from the 

base vertices (Figure 10).  The 

result was fascinating.  It 

“looked like” each horizontal 

segment was cut into equal 

length segments in 

consecutive numbers: 2, 3, 4, 

5, 6.  How to prove it?  Aha, 

by tipping the shear 

invariance diagram upside 

down I could show each 

horizontal line segment was 

cut into equal subsegments 

(Figure 11, Figure 12, and 

Figure 13).   

Joining the intersections in the last horizontal segment with lines from the vertex of the triangle 

cut the smaller line into 6 equal segments as required for the problem solution (Figure 14). 

Nakul Dawra’s Variation 

Dawra did virtually the same thing as I did.  But he stopped at my initial attempt (Figure 9) using 

a skew triangle and just asserted without proof that the line from the vertex through the crossing lines 

bisected the base.  He then continued to bisect the base segments into equal subsegments getting 2, 4, 

and 2
3
 = 8 equal subsegments.  He then used the first 6 subsegments and lines from the vertex of the 

triangle to cut the smaller line into 6 equal segments.   

So I felt my approach at least was fully proved, and it also produced a very fascinating pattern of 

equal segments from line intersections down the triangle towards the base.  In addition there was the 

interesting facet that this pattern was produced no matter what the starting line segment was. 

Solution to Problem 2 

Figure 15 shows the solution.  Without loss of 

generality, I assumed the parallel lines were 1 unit 

apart and the horizontal extent of the curve was also 1 

unit.  My reasoning, which agreed with Dawra’s in this 

case, went as follows. As the vertical line (from x 

through f(x)) moves to the right in the figure, the upper 

blue area will decrease and the lower red area increase.  

To the left of the point x0 the addition from the red 

area is less than the decrease from the blue area, so the 

total area is shrinking.  To the right of the point x0 the 

addition from the red area is greater than the decrease 

from the blue, so the total area is increasing.  

Therefore, it is right where the increase in the red area 

exactly balances the decrease in the blue area that the 

total area is minimal.  This happens to occur when the 

vertical height of the curve f(x) is exactly ½.   

Therefore to find where the vertical line should be 

  
Figure 13  Final Equal Segments Figure 14  Final Solution 

 
Figure 15  Minimum Area Solution 



Three Coffin Problems 180907.doc 5 

drawn for the minimal total area, first find where the horizontal line at ½ crosses the curve and draw 

the vertical through that point. 

Calculus Solution 

I am not sure whether the Russian students would know calculus for this exam, but there is an 

easy solution using it.  Namely, the total area is given by the integrals 
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Therefore, the minimum will occur for the x0 where the derivative vanishes, that is, 

dA/dx = A'(x0) = f(x0) – (1 – f(x0)) = 0 

or 

f(x0) = 1/2 

just as before. 

Solution to Problem 3 

Just rotate a copy of the 

original equilateral triangle 60° 

counterclockwise and place it 

adjacent to the original (Figure 

16).  Then voila!  All the 

interior angles of the new 

(shaded) triangle are the same 

as those centered on the original 

lines minus 60°. 

One detail: the figure shows 

the addition of a red dashed line 

closing off an equilateral (red) 

triangle.  When the (solid) red 

line is rotated 60°, the two lines 

become the equal sides of a 

triangle with vertex 60°.  That means joining their free ends makes an equilateral triangle, whose new 

side forms the small triangle in the problem.  Amazing! 

 

Even though I was able to solve the first two problems, it still took me considerable time—

several hours to think up the approaches and to work out the details.  Khovanova said the exam was 

oral, so I am sure under such pressure I could never have found the solutions in time. 

© 2019  James Stevenson 

 

 
Figure 16  Problem 3 Solution 


