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Polygon Altitude Problems I  
(27 August 2018) 

Jim Stevenson 

 

I found the following related problems by James Tanton on Twitter (@jamestanton 

https://twitter.com/jamestanton).   

 
 

Problem 1.
1
  An equilateral triangle moves about 

inside another maintaining its matching orientation. 

What can you  say about the sum a + b + c of 

distances shown?   

Problem 2.
2
  A small equilateral triangle moves about 

inside a large one while maintaining its orientation to 

match that of the large one. What can you say about 

the sum of distances a + b + c shown? Anything to be 

said about d + e + f?    

 

Problem 3.
4
  A small regular hexagon moves about 

inside another regular hexagon always keeping its 

orientation aligned. What can you say about the sum 

of distances a + b + c + d + e + f shown as it moves? 

Problem 4.
3
  Classic: Prove that if a convex polygon 

has rotational symmetry of any degree (eg 60 deg 

symm, 180 deg symm, etc), then for a point inside the 

polygon the sum of its distances to each side of the 

polygon is a fixed predetermined value. (Viviani = 60 

deg symmetry.) 

Lord Karl Voldevive  @Karl4MarioMugan 

Replying to @jamestanton:  This is only valid, if the 

sides of the polygon are extended, so that each 

distance meets its line perpendicularly. One example 

is a long thin rhombus with 180 degree rotational 

symmetry. 

                                                      
1
  https://twitter.com/jamestanton/status/1028991577803251714, 13 August 2018 

2
  https://twitter.com/jamestanton/status/1029718361687523328, 15 August 2018 

3
  https://twitter.com/jamestanton/status/1030126963246153729, 16 August 2018 

4
  https://twitter.com/jamestanton/status/1029364678139342848, 14 August 2018 
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Even though all these problems do not involve perpendiculars, they have a common solution 

approach.  In a later tweet
5
 Tanton refers to a Viviani Theorem associated with these types of 

problems.  I do not recall that theorem explicitly or by name.  I also have not looked it up yet, in order 

to solve these problems on my own.  I am guessing there is a more classical Euclidean geometry 

proof, but I like the vector approach for its clarity.  (For the Viviani Theorem and Euclidean proof see 

p.9) 

Solution to Problem 1 

The first thing we do is center the blue triangle.  Then we move the perpendiculars so their 

extensions meet in the center P of the blue triangle as shown in Figure 1.  This last operation does not 

change the lengths of the perpendiculars.  We designate the length of the edge of the large triangle as 

S and that of the small blue triangle s.   We shall first solve the problem for the perpendiculars 

meeting at P in the large triangle.  Scaling the result to the small blue triangle and subtracting that 

from the result for the large triangle gives the answer to the original problem.  For ease of use, we 

shall continue to label the length of the perpendiculars converging on P as a, b, c.  

Next we consider unit vectors ua, ub, uc lying along the perpendiculars and emanating from P as 

                                                      
5
  https://twitter.com/jamestanton/status/1030655003881623553, 17 August 2018 

 
Figure 1 

 
Figure 2 

 
Figure 3  Triangle unit vectors 

 
Figure 4  New position for P via vector v 
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shown in Figure 2.  Figure 3 shows their values.  The idea is to move P (and the perpendiculars) 

around inside the large triangle to some point P' and see what the effect is on the sum of the lengths.  

Let v be the vector from P to P'.  Then the projection of v onto each of the unit vectors gives the 

change in the corresponding lengths of the perpendiculars (see Figure 4).  For example, v·ub is the 

change in the length b (in this case negative).  Therefore, we sum the changes to the three 

perpendiculars: 

v·ua + v·ub + v·uc = v·(ua + ub + uc) = v·((√3/2i – 1/2j) + (–√3/2i – 1/2j) + j) = v·0 = 0 

In other words, there is no change to the sum of the lengths no matter where P moves in the triangle.  

(Notice in the inset to Figure 3 how the unit vectors when added vectorially (tail to head) add to 0.  

This is because the equilateral triangle implies the unit vectors are equally spaced at 120° intervals.) 

  

Figure 5  Initial a + b + c Evaluation Figure 6  Alternative a + b + c Evaluation 

Moving P to the top vertex of the large triangle yields a = b = 0 and c = √3/2 S (Figure 5).  

Therefore the sum a + b + c = √3/2 S for all points P' in the large triangle.  Thus, the corresponding 

sum for the small blue triangle is a + b + c = √3/2 s.  The value of the original sum is then 

a + b + c = √3/2 (S – s) 

There is an alternative way to compute the constant a + b + c.  From the initial central position of 

the point P we see that the distances a = b = c (Figure 6), again because the triangle is equilateral.  

Given all the relevant congruent triangles in the equilateral triangle, we see that a / (S/2) = tan 30° = 

1/√3 ⇒ a = S / 2√3.  Therefore. a + b + c = 3a = √3/2 S, as before. 

Solution to Problem 2 

 

 

Figure 7 Figure 8 
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We proceed as in Problem 1 as shown in Figure 7, shifting and extending the line segments to 

meet in the middle of the centered blue triangle.  In order to use the same argument as before, we 

need to add the perpendiculars from the center (point P) as shown in Figure 8.  As also shown in 

Figure 8, the desired lengths are 2/√3 times the corresponding perpendicular lengths. Thus, from the 

solution to Problem 1 we have  

a + b + c = 2/√3 (a' + b' + c') = 2/√3 (√3/2 (S – s)) = S – s 

  The sum  d + e + f  takes some further 

reasoning.  Figure 9 shows the configuration after 

the point P has moved off center.  The figure 

shows that the length d is the same as the b line 

extended to the opposite side of the triangle.  

Similarly, for the other two lengths.  Figure 9  

further shows the following relationships 

a = d – b,  b = e – c,  c = f – a 

This means  

 d + e + f = a + (f – a) + b + (d – b) + c + (e – c) 

 = a + c + b + a + c + b 

 = 2 (a + b + c) = 2S 

∴∴∴∴   d + e + f  = 2 S  
Figure 9 

 

Partial Solution to Problem 3 

Perpendiculars Case 

   

Figure 10 Figure 11 Figure 12 

If we proceed as in Problem 1 and consider the perpendiculars all emanating from a point P, 

starting at the center position (Figure 10), we soon confront the problem shown in Figure 11 where 

the “perpendiculars” no longer intersect the original side at 90°, but rather an adjacent side at an acute 

angle.   

Figure 12 shows a remedy where a constraint is placed on the smaller blue hexagon moving 

inside the larger hexagon, namely, restrict its size so that the distance from its center to any vertex is 
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greater than one half the length of the side of the larger hexagon.  Another remedy is to apply Karl 

Mugan’s comment to Problem 4, “This is only valid, if the sides of the polygon are extended, so that 

each distance meets its line perpendicularly.”(Figure 13).  As in the equilateral triangle case, we 

consider unit vectors in the direction of increasing length for the perpendiculars (Figure 14).  Because 

the hexagon is regular, each unit vector is 60° apart from its nearest neighbors, and so their sum is 

again 0 (Figure 15). 

We continue as in the equilateral triangle case (Figure 4) and apply of vector v from the center 

position of P to an arbitrary new position P' inside the hexagon.  Projecting v onto each of the unit 

vectors computes the corresponding changes in the distances from the (extended) edges.   

v·ua + v·ub + v·uc + v·ud + v·ue + v·uf = v·(ua + ub + uc + ud + ue + uf) = v·0 = 0 

Now to find the value of the constant sum for this regular hexagon.  We use the second method 

mentioned for the equilateral triangle.  From the center position we have that all the perpendicular 

distances are equal, that is, a = b = c = d = e = f.  Now a / (S/2) = tan 60° = √3 (Figure 16).  Therefore, 

a = 3√3 S, so that 

a + b + c + d + e + f = 6 a =  3√3 S 

This at least shows a solution for the hexagon with perpendiculars from the center.  Having 

perpendiculars from the corners, as in Problem 1, should just shift the green hexagon allowable region 

for the center of the small hexagon. 

  

 

 
Figure 13  Perpendiculars to 

extended sides 

Figure 14  Unit vectors for 

hexagon perpendiculars 

Figure 15  Unit vectors and zero 

sum 

  
Figure 16  Computing a + b + c + d + e + f Figure 17  Regular n-sided polygon 



Polygon-Altitude Problems I 180827.doc 6 

It is possible to generalize this approach to any regular n-sided polygon (Figure 17).   

 a1 + a2 + … + an = n a1 =  n S/2 / tan 180°/n (1) 

“Slant” Line Case 

It does not look like the original slant line case of Problem 3 yields the same constant results.  

Figure 19 shows one example of moving the small hexagon around the inside of the large hexagon 

starting from the center position (Figure 18).  The aqua lines show red lengths lost and the green lines 

show red lengths gained.  The short loss just equals the short gain and so cancels.  The long gain just 

equals one original red length, but two were lost.  So that leaves a net one length lost, which implies 

the sum of the lengths did not remain constant.  I am not sure what other relationship might remain 

invariant. 

Solution to Problem 4 

  
Figure 20  Parallelogram Rotational Symmetry 

(p = 2) 

Figure 21  “Diamond” Rotational Symmetry 

(p = 2) 

  
Figure 22  Regular Decagon (p = 1) Figure 23  Irregular Decagon (p = 2) 

  
Figure 18 Figure 19 
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Since equation (1) solves Problem 4 for regular polygons, we are interested in irregular polygons 

with some rotational symmetry.  That is, there must be some angle θ < 360° that we can rotate the 

polygon and the resulting shape is identical to the initial one (θ = 360° means there is no rotational 

symmetry).  Figure 20 – Figure 23 show various polygons with their (minimal) rotational symmetries.  

Notice that the regular decagon also has rotational symmetries of 72° and 180° besides the 36°.   

We are interested in the minimal rotational symmetry θ.  In particular this means θ divides 360° 

evenly.  That is, there is some integer m such that m θ = 360°.  Notice that the number of rotations m 

that restore the polygon to its original position is also the number of sides of the polygon that have the 

same length, since one side must be able to replace another without showing any difference.  If m = n, 

the number of sides of the original polygon, then that polygon is regular—all its sides are the same 

length and span the same angle.  If m < n, then m must divide n, so that there is an integer p such that 

n = m p, since the m rotations that move the m sides into identical positions also move the remaining 

sides into their identical positions (see Figure 24).   

 
Figure 24  Rotational symmetry of irregular n-sided polygon 

Now the key to the sum of perpendiculars being constant is that the corresponding unit vectors 

are separated by the same angle.  So for each of the p sets of m sides of the polygon the 

corresponding unit vectors have this property.  Therefore they each will sum to 0 and so the 

projections will cause a net 0 change in the lengths as before. 

For example, consider the “diamond” 6-sided polygon in Figure 21 and the usual vector v moving 

the center point P to any point P' in the interior of the polygon with perpendiculars to the (extended) 

sides: 

v·ua + v·ub + v·uc + v·ud + v·ue + v·uf = v·(ua + uc + ue + ub + ud + uf) = v·(0 + 0) = v·0 = 0 

The difficulty comes when we try to compute the constant sum.  We no longer have the simple 

equation (1).  Now we have (in the case p = 2 for example) 

a1 + a2 + a3 + a4 +… + a2m-1 + a2m=n = m a1 + m a2  =  m S1/2 / tan θ1/2 + m S2/2 / tan θ2/2 

where θ1 + θ2 = θ, the minimal rotation symmetry.  If the sides Sk and angles θk are unknown, we 

can’t evaluate the constant sum. 

Alternative Method for Problem 4  

Applying a Polya idea to transform the problem to a limiting case, I imagined what would happen 

as the number of sides of the regular polygons increased, say to infinity, that is, a circle.  Then the 
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ideas of “adding” up lines from a point to the boundary of the circle is reminiscent of the old 

Cavalieri “indivisible” line arguments in the early years of the calculus.  So that made me think of 

transforming these problems into “equivalent” area problems (eventually using “infinitesimals” that 

have non-zero area instead of the lines). 

Convex Polygons With n Equal Sides (Regular Polygons) 

We begin again with regular polygons.  Figure 25 and Figure 26 show a regular hexagon and 

regular octagon subdivided into triangular areas with a common vertex at the random point P’ inside 

the polygon.  These triangles sum to the total area inside the polygon no matter where P' ends up. 

  

Figure 25  Regular hexagon with areas Figure 26  Regular octagon with areas 

So for the hexagon we have 

 ½ a S + ½ b S + ½ c S + ½ d S + ½ e S + ½ f S 

= ½ S [a + b + c +  d + e + f] = Area of hexagon 

Therefore, the sum of the perpendiculars must be a constant, as before.  From the central position for 

P we can compute the area of one triangle using equation (1) for the altitude 

a = S/2 / tan 180°/6 = S/2 / tan 30° = S/2 / 1/√3 = √3/2 S 

Area of triangle = ½ S (√3/2 S) = √3/4 S
2
 

Area of hexagon = 6 Area of triangle = 3√3/2 S
2
 

Therefore,  

a + b + c +  d + e + f  = Area of hexagon/ S/2 = 3√3 S 

as before.  Clearly this approach works for any regular polygon. 

Notice these areas are of the form 

 ∑∑
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where L is the perimeter of the polygon.  That is, the area of the regular polygon becomes L/2 times 

the average of the altitudes.  Therefore, for any regular polygon of n sides (actually any convex 

polygon whose n sides are equal), all we have to do is find its area, divide by half the perimeter, and 
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multiply by n to get the constant sum of the altitudes from any point P inside the polygon.  In other 

words, equation (2) is equivalent to the 

Claim.  For any convex polygon of n equal sides and for any point in the interior of the 

polygon, the sum of the (perpendicular) distances from that point to each of the (possibly 

extended) sides of the polygon is a constant, and that constant is 2nA / L, where A is the area 

and L is the perimeter of the polygon.  

Viviani Theorem 

Returning to the beginning, we can apply this Claim to 

get a geometric proof that the sum of perpendiculars from a 

point P in an equilateral triangle is a constant, since we 

already know the area of the triangle.  (This is in fact the 

Viviani Theorem and proof. It is limited to equilateral 

triangles.)  Decompose the equilateral triangle into three 

triangles with bases the edges of the equilateral triangle and 

vertices coinciding with P (Figure 27).  Then  

A = ½ S √3/2 S = ½ a S + ½ b S + ½ c S = ½ S (a + b + c) 

⇒ a + b + c  = √3/2 S  as before. 

Convex Polygons with Rotational Symmetries 

Now we consider the general problem of irregular polygons with rotational symmetries.  The 

discussion before about subdividing the sides with common length and rotational symmetry θ still 

hold.  That is, θ must divide 360° evenly so that m θ = 360°.  Again if n is the number of sides to the 

polygon, then m divides n, so that n = m p for some integer p (see Figure 24 and examples Figure 28 

and Figure 29). 

  
Figure 28  Parallelogram with areas (p = 2) Figure 29  Diamond with areas (p = 2) 

For example, consider the diamond 6-sided polygon in Figure 29.  The areas become 

½ a S1 + ½ c S1 + ½ e S1 + ½ b S2 + ½ d S2 + ½ f S2 

= (a + c + e) ½ S1 + (b + d + f) ½ S2 

= Area of Diamond (3) 

Looks like there may be a problem with this approach.  The relationship (3) is of the form 

Ax + By = C 

where A = ½ S1, B = ½ S2, C = Area of Diamond, x = (a + c + e), and y = (b + d + f).  The locus of 

points (x, y) is a straight line, that is, x and y can vary in a dependent way, namely, y = -A/B x + C/B.  

 
Figure 27  Viviani Theorem 
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There is a constraint: x and y must be positive. But that 

amounts to saying neither the sum of green areas nor 

the sum of red areas can be the entire area, which is 

true.  So it is not immediately evident to me what 

condition would render x and y each constant.   

Aha!  We need to reduce it to a previous problem 

we have solved, namely, the regular polygons.  Figure 

30 indicates the way out.  For any of the set of m 

identical sides, we can extend them to an m-sided 

regular polygon.  So in the Diamond example, we can 

extend the S2 sides to an equilateral triangle with sides 

of length S2'.  Then  

(b + d + f) ½ S2' = Area of the triangle T 

Therefore,  

(b + d + f) ½ S2 = T S2 / S2'  = constant 

⇒ b + d + f = constant 

(Of course, we already knew from the triangle that b + d + f = constant. But the subsequent 

computations make clear how the original setting was constant.) Repeating this for the other sides 

yields the final answer. 

Convex Figures with Straight or Curved Perimeters 

Now we return to the idea mentioned initially regarding the area approach: taking limits of 

“infinitesimals”. 

The average altitude idea even works for a circle or any convex figure (the line between any two 

points in the figure also lies in the figure).  First, notice that equation (2) can be written  
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where the sides of the regular polynomial become possibly arbitrary lengths ∆bk corresponding to 

arbitrary segments of the sides of non-regular polynomials and hk represent the altitudes from the 

fixed point P to the (extended) segment ∆bk.   

 
Figure 30  Regular 3-sided polygon 

extension (triangle) 

 
Figure 31 
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There is another way of representing an infinitesimal area ∆Ak that involves the distance along 

the slant line from the fixed point P to an arbitrary point on the boundary of the convex figure.  This 

sort of corresponds to the slant line cases of the polynomials considered in the previous problems.  

Figure 31 shows a slant line of length r from P to a point on the perimeter of the convex figure.  The 

blue line represents the tangent line to the perimeter at the point.  A small wedge of area can be 

constructed based on a small change in angle ∆θ at P.  One way is shown in red bounded by the radial 

length r on both sides and the arc length ∆s = r∆θ at the base.  The arc length ∆s meets the radial 

length r at a right angle.  Then ∆A = ½ r ∆s = ½ r
2
 ∆θ.  As ∆θ shrinks to zero, the infinitesimal area 

∆A looks more and more like the slant length r, so adding up all the infinitesimal areas around the 

convex figure looks like adding up all the slant lines. 

This infinitesimal area is also approximated by another type of wedge similar to the triangular 

areas we computed for the regular polygons.  Using the tangent line to the point on the perimeter, we 

form a small base ∆b along the tangent line determined by the wedge of angle ∆θ, namely 

rb
r
s ∆+≈∆

∆
∆ 2)(1  (Figure 31).  Then ∆A = ½ h ∆b = ½ h r

r
s ∆+

∆
∆ 2)(1 where h is the altitude from 

P to the tangent line.  Now as ∆θ, ∆r → 0, ∆A → ∆A.  So either infinitesimal should give the same 

result in the limit.   

In terms of calculus, we have for the area A inside the figure determined by lines from a point P, 

first using the scheme of equation (4), 
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From equation (5) we can define the “average altitude” h̄  via  

A  = Lhdrhdrrh
dr
ds

dr
ds

2
12

2
12

2
1 )(1)(1)( =+=+∫ ∫  

where again L is the length of the perimeter of the convex figure.  So for a circle of radius r, we have 

the average “average altitude” h̄  = Area / ½ Perimeter = π r
2
 / π r = r, as expected.   
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