Point Set Topology

(25 January 2018, rev 26 December 2018)
Jim Stevenson

A non-mathematician friend asked me what was tapglin particular point set topology and
algebraic topology. Here is my attempt at an exatian. Perhaps a good high-level summary of the
idea is from the excellent 1972 book on the histdrgnathematics by Morris Kline ([1] pp.1158-9):

A number of developments of the nineteenth century crystallined hew branch of
geometry, now called topology but long known as analysis.sTo put it loosely for the moment,
topology is concerned with those properties of geometrigdig that remain invariant when the
figures are bent, stretched, shrunk, or deformed in anyhedylbes not create new points or fuse
existing points. The transformation presupposes, in ofwds, that there is a one-to-one
correspondence between the points of the original figurerengddints of the transformed figure,
and that the transformation carries nearby points into neaihysp This latter property is called
continuity, and the requirement is that the transformatianitarinverse both be continuous. Such
a transformation is called a homeomorphism. Topology endtiosely described as rubber-sheet
geometry, because if the figures were made of rubber, it waaldossible to deform many
figures into homeomorphic figures. Thus a rubber band eateformed into and is topologically
the same as a circle or a square, but it is not topologicallgaime as a figure eight, because this
would require the fusion of two points of the band. ...

Topology, as it is understood in this century, breaksndimto two somewhat separate
divisions: point set topology, which is concerned witbrgetrical figures regarded as collections
of points with the entire collection often regarded as a spacer@mdlinatorial or algebraic
topology, which treats geometrical figures as aggregates ofesrhallding blocks, just as a wall
is a collection of bricks.Of course notions of point set topology are used inbboatorial
topology, especially for very general geometric structures.

Before discussing algebraic topology | thoughtritdent to begin with “general topology” (aka
“point set topology”). | will try to lead into thsubject via a historical path.

Historical Background

On another occasion | alluded to the crisis in mathtics caused by the advent of Fourier Series
in the beginning of the fBcentury and how it led to a deeper understandingathematics that
included the origin of point set topology (see refees [2] [3] [4]). But in fact the problems gack
further to the very origin of calculus in the™d@entury where the idea of infinite processes Lidicig
infinite sums, infinitesimals, and instantaneouesaf change, were challenged from the outset.

Zeno's Paradoxes

This unease actually traced back even furtherdotmally the dawn of real mathematics with the
Paradoxes of the Greek philosopher Zeno of Eld&(cBC):

JOS: This is a bit obscure. Perhaps a betséindiion is that point set topology is generaliycerned with
local behavior, while algebraic topology addresglebal properties. And algebraic topology does thy
attaching numbers and algebraic structures tonkenlying spaces in such a way as to charactepeeifec
properties, such as whether the spaces have hol@$ow many holes.
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Dichotomy Paradox
That which is in locomotion must arrive at the half-way stagfore it arrives at the goal.
—as recounted by Aristotle, Physics VI:9, 239b10

If we say the distance to the goal is D, then theagox is interpreted as saying first one
has to travel half the distance (D/2), and thet bfathe remaining distance (that is, half of
D/2 or D/4), and so on, ad infinitum. This is iqteeted as forming the infinite sum

D D D D

—+—+—+—+...

2 4 8 16
and “everyone knows” adding in infinite number aisfiive quantities will increase without
bound and so the infinite sum cannot possibly leedistance D. This obviously contradicts
the physical fact that one can indeed cover thaiie D and reach one’s goal.

With one known exception this ancient Greek avoigaof infinite processes persisted for almost
2000 years and delayed the further advance of mmtties in this area until the arrival of the Middle
Ages and philosophers like Nicholas of Cusa (14@864) who identified the infinite with God.
Since God existed, so did infinity, and so off thvesnt, ignoring the Greek warnings and developing
the ideas of calculus with only the vaguest ofitite ideas about infinite processes (in accordance
with their religious beliefs).

The one Greek exception was Archimedes (¢.287-21p ®ho used the idea of an infinite sum
of inscribed triangles to yield the area of a @r@lvhich we will consider below p.5). However, he
avoided the direct notion of an actual infinite sbhynemploying the Eudoxus theory of Exhaustion.
Nevertheless, his amazingly prescient insights ieeagignored until Kepler (1571-1630) in the"17
century employed them almost 2000 years latersrdisicovery of the equal areas law.

Limits — Infinite Series

All of these infinite processes were eventuallyritii@d” by the idea of “limits,” which was
codified in the 18 century by mathematicians such as Augustin-LoigcBy. To take a canonical
example, consider Zeno'’s dichotomy paradox thaeedgred the infinite series

Yo+ s+ g+ e+ ... (1)
(where we have assumed the distance D = 1). Hnidbe rewritten
(1) + (1)* + (12 + ()" + ...
which is of the form
r+r+r+r+ ..

where r = %. If we consider a finite sum=Sr + ¢+ + * + ... + 1", then the infinite sum is just
what happensto thg 8s n=1, 2, 3, ..., that is, as n grows withoutrahwvritten n® . Now

S —r§=r—p"

So
__ra-n
S= Ty

Sincer<1l,as® ,r"® 0and $® r/(1-r). Forr =/,, this means S® 1. That is, the partial
sums {approach 1 “in the limit” as n grows arbitrariprge. So welefinethe infinite sum in (1) to
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be 1, the limit of the sequenceg JThis agrees with the physical fact that we aatually cover the
distance D = 1 after all.)

Traditionally the infinite sum beginning with 1 amith r < 1
1+r+f+P+ . +M+ ... =101 -r) (2)
is called thegeometric series

If for an infinite series, the sequence of padiains =& + & + ... + g approaches a limit S as
n® , we say the seriesonvergesand the sum is S. If it does not approach anyt I{grows
without bound or oscillates toward more than oneievdike 1 — 1 + 1 — 1 + ), we say the series
divergesand we cannot assign a sum to it.

Divergent Harmonic Series

Notice that if §® S, then the nthtermya S, — S.:® 0. But a® 0 is a necessary and not
sufficient condition for convergence, for consitiee example of thearmonic series

L+ +Yg+ g+ s+ .+ Y+ (3)
Then a=1/n® 0,asm® . Now consider the partial sums
Si=1l+Y+ Y+ Y+ Y+ L +Y,

Note the behavior of the following subsequenceasfipl sums

S, =1+, 1+, =1+, =1,
Si=1+Y+ Y+, 1+ +C, + 1) =1+, +, =2
S=1+Y+ Y+ e+ oty L+t Mat )+ Mg+ + ) =1+ + o+ Y, =2,

2 4

SX = (k+2)/2

This shows the subsequencé& @ows without bound. The whole sequengea&not be converging

to a finite limit if a subsequence is growing withdound. In fact, since for all n, 8 S.;4, all the
other members of the sequence are being carriedrdgvby this increasing subsequence, so that the
whole sequence grows without bound, thatligerges

The difference between the geometric series ira(2) the harmonic series in (3) is that the nth
term I in (2) goes to zero much faster than 1/n in (Bituitively this means that eventually higher
terms in the geometric series are negligible amdb&aignored, but in the harmonic series the higher
terms, though getting smaller, still contribute anmegligible amount that accumulates to the point
where it feeds back into the sum from the earéems.

Cauchy Definition of Limit

The way Cauchy codified this limit process in ti8¥ tentury can be described as follows. S is
called thdimit of an infinite sequenceof terms §if no matter how small a tolerance> 0 is chosen,
one can find an integer N large enough such thalfan > N, § is within that tolerance of S, that
is, |S—g < . |S— ¢ is the absolute value of the difference betwean®$. Thatis,-<S - §<

orS— <§<S+ . This can be visualized along the real line by

f—%
S- S S S+
| [ |
| — |
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Another way of saying this is that eventually detS will be in an open interval (S 5 S + )
containing S. (An open interval (a, b) of the rea¢ consists of all values x such that a < x <f.
closed interval [a, b] consists of all values xIstltat a x b.) SoCauchy reduced the question of
finding limits to solving sets of inequalities.

Even though the religious Renaissance mathematiaigight believe in an actualized infinity
(Nicholas of Cusa said a ciraleasa polygon with an infinite number of sides), tlemcept of a limit
avoids that idea, as did the method of Exhaustidbhe best English equivalent would be the word
“destination.” It connotes an inevitable goal that not yet been reached. It has an existentd, bu
only has meaning in relation to an ongoing processyet completed.

Geometric Series Example

To illustrate Cauchy’s definition of a limit, codgr again the geometric series in equation (2)
and its partial sums,& 1 +r+f+r+ ...+ " Weclam$® S=1/(1-r),as® . Now

S-S = 1 1-r _r
1-r 1-7r 1-r

We assumed r < 1 and implicitly that r > 0. Lgtist assume |r| < 1, thatis -1 <r < 1. NoticH the
can assume |r| > 0, since if r=0, then §=8for alln, and $= S = 1, and so 1 is trivially the limit.
For any number a, if 0 < a < 1, then 0%<aa, and in fact 0 <"& < d. Hence, we can maké as
small as we wish for sufficiently large n (there aome details here we ignore). Similarly, if we a
given an arbitrarily small number> 0, we can find a suitably large N such thatdibn > N, |r] = |1

< [1-r]|. Then
. dl- r|

n

r
S-s,|= =e
1-r] -
And so S satisfies the limit definition.
Numerical Example. Suppose r &/, and §$=1 + {1,) + (1,)* Table 1
+ M)+ ...+ (/)™ How big should N be so that for all 0N, S, S—§

|S — @l < 0.0005, that is, Sapproximates S (= 2) accurately t0 1 1.000000 1.000000
three decimal places? This means no matter how teems are 5 1500000  0.500000
added after g they will not contribute enough to cause rounding3 1750000  0.250000

into the third decimal place. 4 1.875000 0.125000
Sowe want [t < |1 —r|, thatis, 1.937500  0.062500

_ _ 1.968750  0.031250

5
6
7
This means we want n > 2 + 3/lgg= 11.96. So N = 12 should 8 1.992188  0.007812
9
0

do the job. If we examine Table 1, we can see snoceigh, $ is 1.996094 0.003906
within 0.0005 of S = 2. 1 1.998047 0.001953

L o 1.999023 0.000977
So we now have a way to decide if an infinite sian bave a
- . Y i i : 1.999512 0.000488
finite value assigned to it in a meaningful waymedy its partial
sums must have a limit as n grows without boundsimilar limit
idea can be given for defining areas and volumes.
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Limits — Area
Archimedes (c.287-212 BC).

Almost 2500 years ago Archimedes computed the afea
circle of radius r apr? wherep is the ratio of the circumference (
of the circle to its diameter D = 2r. He did thig mscribing
regular polygons of an increasing number of sids&le the circle
and letting the number of sides increase withoutndo The
polygons were built starting with two triangles édson the r
diameter of the circle and inscribed in the coroesing
semicircles.  Subsequent polygons are generatedadsing
triangles based on the sides of the previous tiganand inscribed
in the remaining space in the circle (see Figure Ihe nth
polygon is the perimeter of the outer edges of s set of
triangles added in the nth step. If ®presents the areas of tHe -
triangles added in the nth step (shown in a comombor in Figure
1), then the area of the nth inscribed regular gatyR, is

Pn=A1+A2+A3+...+A~| (4)

Rather than attempt an infinite sum, Archimedesuedgusing the Exhaustion Principle. He
asserted that the sum was the area T of a triaviiiealtitude the radius r and base the circumfeeen
C of the circle, thatis, T4, r C =%, r (pD) = p . He then argued by contradiction, that is, he
supposed the area A of the circle was greaterThdn< A, and claimed that he could take a polygon
with a sufficiently large number of sides n so tRais so close to A that T <,K A. But then he
showed that all the areas of the inscribed polyduam to bdessthan the area T pri—and so a
contradiction. He then arrived at a similar codition by supposing A < T and using a series of
circumscribing polygons that shrank to the arethefcircle inscribed in all these polygons. Thues t
only non-contradictory answer was that A had toaégqu

Figure 1 Archimedes Circle
Computation

Numerical Example. | performed Table 2 Output forr=1

a computer implementation of equatiol Ste Area Area Diff Increment

(4) assuming a unit radius (r = 1). This P Increment  AreaP, 2_p Ratio

means the area of the circle should ju: A, pr-Fn And/A,

be p= 3.141592654... (to 9 decimal 1 2.0000000 2.000000 1.1415927

p|aces)_ Table 2 shows the resu|ts_2 0.8284271 2.828427 0.3131655 0.4142100

After 10 StepS, the area of p0|ygoﬁb P 3 0.2330403 3.061467 0.0801252 0.2813000

is a|ready good to 5 decimal p|aces (the 4 0.0599777 3.121445 0.0201475 0.2573700

errorp 12 — P < 0.000005). This is 5  0.0151033  3.136548  0.0050442 0.2518200

pretty fast Convergence. 6 00037827 3140331 00012615 02504500

o 7 0.0009461 3.141277 0.0003154 0.2501100

Out of curiosity | also computed g (0002366 3.141514  0.0000789 0.2500300

the successive ratios of the incrementalg g oop0591  3.141573  0.0000197 0.2500100

areas Ay/An. Very quickly the ratios 35 0000148 3.141588 0.0000049  0.2500000

tended toward/s,  So the sum of 0.0000037  3.141591  0.0000012 0.2500000

incremental areas approximated a

geometric series with ratid,, Why this is of interest is that Archimedes aadriout a similar

construction of a series of inscribed triangulagaarto find the area bounded by a parabola and line
crossing its axis. In that case, he proved diyetitht the ratios of successive areas were alltigxac
equal to'/,, and then he computed the sums of the resultingngtic series! (It is hard to believe his
achievements lay fallow for almost 2000 years.)
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17" Century (The Scientific Revolution)

With the embrace of the infinite after the Middlges and the Renaissance, mathematicians in
the 17" century could contemplate infinite processes diyedn the effort to compute general areas,
an early idea was the notion of “indivisibles” asmulgated by Cavalieri ([1] pp.349-350):

Bonaventura Cavalieri (1598-1647), a pupil of Galileo ardgssor in a lyceum in Bologna,
was influenced by Kepler and Galileo and urged by the latteodk into problems of the
calculus. Cavalieri developed the thoughts of Galileo andotiremdivisibles into a geometrical
method and published a work on the subj&tometria Indivisibitibus Continuorum Notta
guadam Ratione Promot@eometry Advanced by a thus far Unknown Method, Indilgsitof
Continua, 1635). He regards an area as made up of an indafiniger of equidistant parallel
line segments and a volume as composed of an indefinite nwhiperallel plane areas; these
elements he calls the indivisibles of area and volume, respectivallieri recognizes that the
number of indivisibles making up an area or volume mu#definitely large but does not try to
elaborate on this. Roughly speaking, the indivisibilititsld, as Cavalieri put it in his
Exercitationes Geometricae SEx647), that a line is made up of points as a striraf eads; a
plane is made up of lines as a cloth is of threads; and asaotidde up of plane areas as a book is
made up of pages. However, they allowed for an infinite numibdwe constituent elements.

Cavalieri's method or principle is illustrated by th A
following proposition, which of course can be proved iineo
ways. To show that the parallelogram ABCD (Fig. 17.7) |
twice the area of either triangle ABD or BCD, he argued t
when GD = BE, then GH = FE. Hence triangles ABD and B(
are made up of an equal number of equal lines, such as G+ ?

EF, and therefore must have equal areas. ... Figure 17.7

G

Cavalieri's indivisibles were criticized by contemporaries,
and Cavalieri attempted to answer them; but he had no rigigustification. At times he claimed
his method was just a pragmatic device to avoid the methedhafustion. Despite criticism of
the method, it was intensively employed by many mathematidithsrs, such as Fermat, Pascal,
and Roberval, used the method and even the language, sudinattes, but thought @rea as a
sum of infinitely small rectangles rather than as a sfitmes [JOS: my emphasis]

This last statement refers to “infinitesimals,” wimiwe will discuss in a moment (below p.8). But
first we need to understand some other mathemat@alopments that came to fruition in thé"17
century that played a role in the story of infinit@cesses.

Symbolic Algebra — Coordinate Systems — Functions

Symbolic Algebra (see Figure 2)Since Babylonian and Egyptian times, cultures éaolved
symbols (numerals) to represent numbers, but ngtitiare. There were no symbols for arithmetic
operations such as addition, subtraction, mul@ian, division, raising to a power, or taking ot
or for equality. What in modern times would beealalgebraic word problems were all there was—
rhetorical statements of problems with no transtainto symbolic equations. Solutions were also
verbal or geometric constructions.

For centuries mathematicians were aware of problewaving the solution of quadratic and
cubic equations, but they were solved by geomeutstructions. Ever since Pythagoras (c.500 BC)
is credited with discovering that the hypotenuse afght triangle with unit sides is irrational?),
the Greeks limited their explicit use of numbersvhole numbers and ratios of whole humbers (via
proportions), that is, rational numbers. Irrationambers were only represented as lengths of,lines
or areas or volumes and so manipulated through gemntonstructions, usually with compass and
ruler alone. A solution to a word problem involgiquadratic equations, for example, was found as a
length of a line in a geometric figure that was dsult of a construction.
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But with the pressures of mercantilism in the Uslieddle Ages and Renaissance and the arrival
of the Hindu-Arabic numerals, including 0, calcolatwanted more than just a mechanical means of
computation, such as an abacus. And so algebyaibas and notation arose during this period,
coming to fruition at the beginning of the"™@entury. For example, Viéte (c. 1591) is creditéth
employing the (capitalized) letters toward the hegig of the alphabet (actually, consonants) to
represent constants (e.g., B, C, D, etc.), andlgtiers toward the end of the alphabet (actually,
vowels) to represent unknowns and variables (&g.E, I, O, U). (But still all numbers were
assumed positive, to reflect their physical origin.

Coordinate system. French mathematicians Pierre de Fermat (1607-1868)Rene Descartes
(1596-1650) are credited with using the variableg ix algebraic expressions to represent geometric
figures, such as parabolas, hyperbolas, etc. H@mbegan was similar to an aspect of the discassio
above in Cavalieri’'s proof that the areas of the tiangles resulting from a diagonal of a
parallelogram are equal (Figure 17.7). Cavalissogiated the varying line GH with the varying line
DG. Fermat and Descartes would label the lengthefine GH as y and the length of the line DG as
x and thus have a way of designating the point Hhanline by the pair of number X, y, called
coordinates. Eventually, figures were orientedhsd the x-coordinate was along a horizontal Iixe (
axis) and the y-coordinate (ordinate) was alongréical line (y-axis). Then every point on thevaur
could be represented by a pair of coordinates Jx, Pescartes explored this arrangement quite
extensively and showed how procedural manipulatanglgebraic symbols could find solutions to
problems that paralleled the geometric methodokttucting the solution, only much more easily.
We give him credit for this approach by callings tboordinate system, Cartesian, and the subject
matter, analytic geometry.

Functions

The dependency of the variable y on tl
variable x that we noted above was recognized ¢
others as well, such as Galileo (1564-1642). T
was the origin of the function concept. We gag ]
a function of x if to each value of x (independer _
variable) we can assign by some ruleuique ]
value for y (dependent variable). Initially thderu ]
was thought of as a formula or equation relati
the variables, such as y =?2for a parabola, y =
1/x for a hyperbola, or Galileo’s formula s's gt’ .
for a body falling a distance s during a time t veghe ]
g is the constant of acceleration. Later t ]
functional relationship was written more abstraci
as y = f(x) where f denoted the function. Tt 3 X
curve of points (x, y) that corresponds to tl 0 b 2 5 a
functional relationship is called thgraph of the
function (Figure 3).

Limits — Integration

Now we return to the challenge of trying to findeas inside regions bounded by curves.
Consider the problem of trying to find the areaema curve (graph of y = f(x)) between the vertical
lines x =a and x = b and the x-axis (see Fig(a§)4 Instead of using lines as Cavalieri did,skell
consider a set of n narrow rectangles inscribethanregion of vanishingly small widtbx (“D’
represents “small change in") and height f(x) whteerectangle just touches the graph y = f(x). We
then sum these rectangles to get an approximatitretarea under the curve:

(x,y) = (2, 1/2)

Figure 3 Graph of y = 1/x
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(a) (b)
Figure 4

Area A, = Si:ln DA = Si:ln f(Xi)DX

As we shrink the width of the rectangles and tmeggdase the number of rectangléx ® 0 and
n® ), the approximating sum of rectangles approachesattual area in the limit. We call this
limit the integral of f(x) from a to b and denote it f(x)dx (see Figure 4(b)). So we have

Sofx)Dx @ 5 f(x)dx
asDx® 0, n®

(The capital Greek letter for s, sigr8ais used to denote a sum, possibly infinite, stokte entities.
Leibniz, Newton’s independent cofounder of calculused the notation on the right for the integral
where the Greek sigma becomes an elongatedfsd Leibniz also converted tiix to dx, which he
called a differential and imagined it as an infisitnal entity, that is, an infinitely small valueat
was not zero!—the more recent embodiment of Cavaliedivisible.)

There is an amazing and wonderful way =
calculate integrals called the Fundamen 4
Theorem of Calculus that we don'’t have time to ]
into now, unfortunately. ]

i - : 1 \y=fm=1
As an illustration, a very important function =3 |* 0"

can be represented by the area under a curve.
is the natural logarithm of x, denoted In(x). dt
the logarithm to the base e (Euler’s constaat}d ]
is given by the area under the hyperbola y =
from 1 to x. That is, if we allow the right han
endpoint of the interval of integration to vary, w 3
have a rule that assigns to each value of x an ¢ 1
from 1 to x, and this number is In(x). With alétt ]
bit of thought, we can see that ]

In(x) = A* 1/t dt

In(xy) = In(x) + In(y),
which is the essential logarithm property. Figure 5 Natural Logarithm of x: In(x)

1 JOS: In other words, y = In x = log also means’e= x. Euler's constant e is the limit of the exgsien

(1 +%)"asn® , which shows up in computations of compound irstea@d in many other places.
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The question soon arises as to what types of fumsthave integrals (allow the process of
approximating sums of rectangles to have a linfjippose we consider the function

I/x O0<x 1
f(x) =
0 x=0

which is our hyperbola for x > 0 where we have afdthe value 0 at x = 0. If we divide the closed
unit interval [0, 1] (0 x 1) into n equally spaced interval®DX = 1/n) thenS;" f(x) Dx =
S,"f(1/n) 1/n = n f(1/n) 1/n = f(1/n) = 1/(1/n) = myhich grows without bound. The limit and
therefore the integral does not exist.

One characteristic of this example is that we caminaw its graph from x = 1 on the right to
x = 0 on the left without lifting our pencil andmyping to (0, 0). A function with the property ofibg
able to draw its graph without lifting the penailsaid to b&ontinuous

It turns out thaif a function is continuous over a closed interfal b], then it has an integral
there. But even some discontinuous functions can hategials, so long as they are bounded. It was
the study of the nature of these points of discwrity that was one of the motivations for point set

topology.
Limits — Continuous Functions

Again Cauchy codified the meaning of a
continuous function which we turn to now. It is no
surprise that it is based on the limit idea. A
function y = f(x) is said to be continuous at aueal
X = a, If it is defined there (f(a) exists), f(x)
approaches a limit L as x approaches a, and that
limit L = f(a). That is, f{(xX)® f(a) as x® a. Using
the limit terminology, this means no matter how
small a tolerance > 0 we place around f(a) we can
find a toleranced > 0 around a such that whenever
| x—a | <d, we have | f(x) —f(a) | & (By the way,
it is perhaps unfortunate that traditionally the
tolerances are represented by the Greek letters
epsilone and deltad.) In terms of open intervals,
we can say that given any small open interva
(f(a) —e, f(a) +€) around f(a) we can find a small
open interval (a €, a +d) around a such that f [(a —
d, a+d]i (f(a) —e f(a) +€). (For sets A and B,
the expression f(A) B means for every k A, f(x)

T B, wherel means “in” or “is an element of”.)
See Figure 6.

I Figure 6 Continuous Function at a Point a

Examples of Discontinuous Functions

Right off we can cite the hyperbola y = 1/x as
discontinuous at x = 0, since the limit a®x0 does
not exit. Similarly the potential sum of the
geometric series 1/(1 — x) is discontinuous at kX =
because again the limit as® 1 does not exit.
Figure 7 shows a generic discontinuous case where
even though the limit L exists and the function is Figure 7 Discontinuous at x = a
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defined at x = a, f(a) L. 20

Figure 8 shows the graph of the function
f(x) =1+ sin(p/x) for0<x l1landf(0)=1.
f(x) is defined and bounded on the closed
interval [0, 1] but it has no limitas ® 0
since it oscillates between 0 and 2 infinitely
often (the graph could not be shown all the

way to 0). 0s
Finally there is the canonical example of a
function that is continuousowhere YO0 N |1 1 O —
(o) 1 xrational " " " " " "
= { 0 xirrational Figure 8y =1+ sin (p/)

f(x) is defined everywhere on the real line, butatinuous at no point. This is because of the
property of the real line that between every twiinrals there is an irrational and between every tw
irrationals there is a rational. So if a is amfional point so that f(a) = 0, then a®xa, there will
always be a rational point z between x and a soffhle= 1. Therefore f(x) /0 =f(a). Similarly if

a is a rational point so that f(a) = 1. A®xa, there will always be an irrational point z beémn x
and a so that f(z) = 0. Therefore f(x) 1 = f(a).

Limits — Sequences of Points

Decimal expansions.

Recall how we can obtain a decimal
expansion for 2.

1°=1<2<4=2

1< 2<2
1.4=196<2<225=1%5
14< 2<15
1.47=19881<2<2.0164=12%2
141< 2<1.42

1.414 = 1.999396 < 2 < 2.002225 = 1.415
1.414 < 2 < 1.415

Figure 9 shows geometrically what is
happening. First we find that2 lies
between 1 and 2. We divide the interval
between 1 and 2 into 10 parts each of width Figure 9 Decimal expansion for 2
1/10. We find 2 lies between 1.4 and 1.5,
so we divide that interval again into 10 parts, nofswidth 1/100. We keep going in this way
keeping 2 in an interval 1/10 the length of the previodsable 3 shows that the left-hand endpoints
of the intervals approximate2 better and better, and these successive endp@ptssent the
decimal expansion of2. Figure 10 shows this graphically as well.
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Table 3
2-14 <15-14 =1 =1/10
2-141 <142-1.41 =.01 =1%#0
2-1414 <1.415-1.414 =.001 =7%10
2 -1.4142 <1.4143 -1.4142 =.0001 = 1/10

In fact 2 is the only point which belongs to
all the nested intervals whose left endpoints yield
the decimal expansion.

Thus for each point on the line we get a
unique sequence of nested intervals containing
only that point in'common,_and the Ieft_endpoints,:igure 10 Nested intervals all containing 2
of the intervals yield a decimal expansion for the
point (repeating or non-repeating). Conversely,dioy decimal expansion, there is a corresponding
sequence of nested intervals taking their left eirdp from the expansion, each having one tenth the
length of its predecessor, and all having only poi@t in common.

Thus we get a correspondence between all the pomtke line and decimal expansions, where
repeating decimals correspond exactly to the paeysesenting rational numbers and non-repeating
expansions correspond to irrational numbers. Amawery real number corresponds to a unigue
point on the number line.

Example: 0.9999... “=" 1.

The nested interval idea provides another way of
seeing the basis for the seemingly mysterious retté
that the number 1 has an alternative decimal expa@s
0.999999.... (Figure 11). We see that the 9s in the
decimal expansion mean we are looking at the mgbst
interval within the closed interval [0, 1] and thaeans
the number 1 is always included as the right endpaifi
each subinterval. Clearly it is the only numbeattwill Figure 11 0.9999...=1
be included in all the nested intervals, and s®%.9
represents its decimal expansion. But so doe€0.00 So we have an instance where our nested
interval definition provides two possible decimajpansions for the same number. Therefore they
must be equivalent. (We didn’t explicitly discweglat happens when the point of interest turnsmut t
land on an endpoint of our subintervals.)

Limit Points

A point on the number line corresponding to an tioreal number has the interesting
characteristic of being the limit of a sequencepoints corresponding to rational numbers (left
endpoints of intervals). A point x on the numheelis called dimit point of a set A, if every open
interval containing x also contains a point from Por example, we saw that for every open interval
( 2-1/10, 2-1/10) of 2, we could find a smaller (by a tenth) closedrivae[ 2 — 1/10", 2 —
/10" 1 ( 2-1/10, 2-1/10) so that the left endpoint (term in the rationaticnal expansion) is
contained in that open interval. Therefore, thationals correspond to limit points of the ratiena

Any set that contains all its limit points is callelosed Notice that a closed interval [a, b] is a
closed set using this definition. For if ¢ is gmgint not in [a, b], say ¢ < a (Figure 12), theloase
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Figure 12 Proof [a, b] is a closed set

d= |c — aJ/2. The open interval (a-c +d) contains no points of [a, b] and so ¢ cannot tieni
point of [a, b]. (A similar argument holds if bes) That means [a, b] contains all its limits psint
and so is closed. (Notice that the endpoints dabamre limit points of [a, b].)

Limits — Sequences of Functions

Power Series

We return to a discussion of functions. We showbdve (Geometric Series Example, p.4),
replacing r by x, that 1/(1 —x) = 1 + x ¥x x*+ ... so long as |x| < 1. This infinite series fishe
form S(x) =a+a x+ax°+ax°+ .. and is called @ower series lIts partial sums are
polynomials §x) =a+a x + & x2+agx3+ ... +a,x" Then the geometric series is a power
series where all the coefficienis=al.

Figure 13 Partial sum functions converging to gemetric series on (-1, 1)

Example — Geometric SeriesFigure 13 shows the graph of 1/(1 — x) with somehef partial
sums. Several things are of interest. We canhsg¢ehe partial sum functions approximate 1/(J) — x
better and better throughout the open intervall}1,But strange things happen at the endpoi0fs.
course, at 1 each partial sun{13 = n, a finite number, which cannot approximéte unbounded
1/(1 — x) there. Still the §l) are growing without bound and trying to catghta 1/(1 — x), as it
were. The left hand endpoint -1 is the really neséing feature. The function 1/(1 — x) is actyall
defined there and is 1/2. But the partial sunf$)S="/, + (-1)"* '/, oscillate between 1 and 0, that is,
the geometric series looks like 1 —1 + 1 -1 +tx a -1, which diverges. Nevertheless, the phrtia
sum functions $x) do get closer t&/, as x® -1, but turn away at the last moment to reacheeith
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or 0 at the endpoint, depending on whether n isardel/en.

Figure 14 Partial sum functions converging to IfL + x) series on (-1, 1]

Example — Logarithmic Series. It turns out that In(1 + x) has a power seriggagsion
IN(L+x)=x=xX/2+x¥3-x%6+... + (-1 X"In + ...

which also converges for | x | < 1. In fact itoat®nverges at its right endpoint x = 1. Thatesei$

an alternating series 1 — 1/2 + 1/3 — 1/4 + ... whidoks converge. At the left endpoint, x = -1, we
have the negative of the harmonic series, -1 —1&B -1/4 — ..., which we already know diverges.
Figure 14 shows the graph of In(1 + x) and soméglaum functions $x). What is really strange
from the plots is the behavior of the partial sumdtions outside the interval (-1, 1] on the right.
They seem to abruptly turn off in all directions.

There is something curious about the interval @iveogence for the power series. We have seen
both examples are symmetric about 0. If we comsiddenore general power series at a pogt x
different from 0O, it takes the form

Sx—%)=a+a(X—X) +aX-—X)+aX-—%)°>+..

Our previous expression was just the power serleEenwg = 0. Note S(0) =@ so S(x) or S(X — g
converges for at least one point, namely, xo= Mow we have the important result, as stated in
Wikipedia “If x o is not the only convergent point, then there vgagks a number r with 0 <r such
that the series converges whenever || «r and diverges whenever |x o> r. The number r is
called theradius of convergenceof the power series.” (“r =" means the series converges
everywhere along the real line.) So a power seni#l alwaysconverge in a symmetric interval
about %. Therefore both of our example series have a sadficonvergence = 1.

An amazing result is that all the basic functiorfsirdgerest in calculus have power series
expansions :

e =1+x+X21+x¥Y31+ ...+ XUnl + ..
sin x =X = X/31+ x5! — X7V +... + (1) X" 2n+1)! + .
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cosx  =1-x20+xY41— x¥6! +... + (-1 x*UI(2n)! + ...
IN(L+x) =x—=xX/2+x¥3-x%6+... + (-1} x"In + ...

wheren=0,1, 2, ...andn!l =n(n-1)(n-2) :22B For example, 5! =-&3-2-1 = 120. To satisfy
the schemata, we define 0! = 1.

So we can consider all the basic functions of egeimn calculus as being “infinite” polynomials.
We can add, subtract, multiply, and divide poweieselike polynomials. But more powerfully we
can integrate (and differentiate, which we havedistussed) like polynomials, which is easy. This
is because

S(X) ® S(x) S(x)dx ® S (x)dx (4)
This is effectively the approach Newton took in ¢édculations with the early calculus.
For example, using the geometric power serieshiyignodified with + x)
UA+x)=1-x+%=X+ ...
we have
IN1+x)= U@A+x)dx= (1-x+X-X+..)dx=x—-%/2+x%3-x%6+...

We have ignored whether all these operations ayal,I¢hat is, whether all the various limits,
such as in equation (4), exist. As mathematiciamgah to worry about this, they discovered a
condition that resolved the problem, to be discdissxt.

Uniform convergence

When we discussed limits for sequences before, eme westricted to numbers, not functions.
We said a sequence of numberh& a numerical limit S, if no matter how smallean O we chose,
there would be an N so large that for all n > 84 § | <e. This idea still works for functions in the
following way. For each value of x in the intentabf convergence, the,&) form a sequence of
numbers approaching S(x) in the limit. So thenweaild write givene > 0, there would be an N so
large that for all n > N, | S(x) &) | <e. The key here is that in general N depends oifihat is,
for a fixede > 0, we might have to choose a different largeoNefach choice of x, since there would
be a different resulting sequence of numbers. H@nother hand, it might happen that one N would
work for all the x in the interval | of interesfThat is, for all n > N, and for all x in the intexvl,
| S(x) — §(X) | <e. Equivalently, this would be for all n > N,

S(X) —e< §(X) < S(xX) +e

for all xT 1. This latter type of convergence is
called uniform convergence of a sequence of
functions. The situation is illustrated in Figure
15. An equivalent way of expressing this is to
say given anye > 0, there is an N so large that
for all n > N, max | S(X) — S(X) | <e.

It can be shown that if r is the radius of
convergence of a power series around Xo= X
with partial sum functions &), then the $
converge uniformly to the sum S on any closed
interval [a, b]l (Xo—r, %+r). Andso $ ®
S uniformly £S5 ® S (equation (4)).

Figure 15 Uniform convergence
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Metric Spaces

We have almost reached our goal of describing psaétttopology. All the things we have
discussed culminated in the beginning of thd 2@ntury with a beautiful abstraction that was
enormously fruitful.

Suppose we designate the set of continuous fursctiara closed interval [a, b] by C[a, b]. Then
as we mentioned above (p.10) every function in 8J&as an integral. Therefore the integral define
a “function” (transformation) F from the set C[tb the real numbers IR, written

F:fl Cla bj® 2f1 R 9)

Now we need to make explicit what we mean pb® ff F(f,) ® F(f) (equation (4)) which looks
very much like a continuity criterion.

First notice that the expression | x —y | wheamd y are two real numbers measures the distance
between them along the real line. We might altievaly write this d(x, y) . Then this distance
d(x, y)T Rhas the following properties:

(1) d(x, y) =d(y,x) O
(2) d(x,y)=0ifand only if x = y
(3) d(x,y) d(x,z) +d(z,y) for any other real number he(triangle inequality)

In all the arguments above where we used the alesellue | x — y |, we could have used d(x, y).
According to Kline ([1] p.1079) this general, axiatic definition of distance was presented by the
French mathematician Maurice Fréchet in the begmmif the 28 century and is called metric.

Any space on which a metric is defined is calledthetric space All the notions of limits of
sequences and variables, including continuity, Wadiscussed above carry over into metric spaces
(just change | x —y | to d(X, V)).

For example, the distance between points
on the real number line R can be generalized to
distance between points in the plangoRin 3-
dimensional space ® Suppose P and Q are
two points in the plane IRwith coordinates
(X1, Y1) and (%, Y»), respectively. Then define
the distance between them d(P, Q) using the
Pythagorean Theorem by

dP, Q) =[Ix=%F+|n-y%FI*

(See Figure 16) It is not hard to show d(P, Q)
satisfies the properties (1) — (3) for a metric on
R?% d(P, Q) is called th&uclidean metric.
Notice that if P and Q are restricted to the real
line R then d(P, Q) = |1 X% |, the original
absolute value metric.

Fréchet defined a d(f, g) on C[a, b] by

d(f, g) = maxi a, 5| f(X) = 9(x) |

He then showed d(f, g) satisfied all the propertigs- (3) for a metric on Cl[a, b]. This is somsdis
called themax metric or uniform metric and it captures the idea of uniform convergerfeéeam the
discussion above we saw that with uniform convergeme can essentially ignore the independent
variables X [a, b]. We can now write,f® f to mean that for every> 0, we can find an N such that

Figure 16 Euclidean metric in IR
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for all n > N, d(f, f) <e. Then the real-valued transformation F can bevsho be continuous using
the max metric. That is, F is continuous at faf everye > 0, we can find a > 0 such that if
d(g, f) <d, then d(F(g), F(f)) <, where the second metric d( , ) is just the alteokalue metric on
the reals.

It is possible to define other metrics on C[a, Bbr example,

df, gk = [ &’ | f(x) — g(x) [ dx T*

is called theL, metric and is the function analog of the Euclidean metrithe convergence of
Fourier series is defined with the inetric.

We can also couch these ideas in terms of neigbbdeh Define aeighborhood N(p, r) of a
point p in a metric space to be the set of poinits the space such that d(p, g) < r, for some t > 0
Then a function f: X® Y from one metric space X to another Y is contumiat p in X if for every
neighborhood N(f(p)g) of f(p) in Y we can find a neighborhood N(d) of p in X such that

f(N(p, D)1 N(f(p), ©).

Fréchet reduced the complicated idea of a fundtice point in some metric space. We can talk
about limit points and closed sets in the funcipace CJ[a, b]. Fréchet's abstraction launchedobne
the most fruitful mathematical pursuits in thé"2@ntury called functional analysis.

Topological Spaces

From Kline’s history ([1] pp.1159-60):

The origins of point set topology have already been related(@6, sec. 2). Fréchet in 1906,
stimulated by the desire to unify Cantor’s theory of pseis and the treatment of functions as
points of a space, which had become common in the calculusiatiamas, launched the study of
abstract spaces. The rise of functional analysis with the ittioch of Hilbert and Banach spaces
gave additional importance to the study of point sets as speeegroperties that proved to be
relevant for functional analysis are topological largely becadmsts lof sequences are important.
Further, the operators of functional analysis are transfornsati@t carry one space into another.

As Fréchet pointed out, the binding property need nobéd&ticlidean distance function. He
introduced (Chap. 46, sec. 2) several different concepts thatasset to specify when a point is
a limit point of a sequence of points. In particular he geizexhlthe notion of distance by
introducing the class of metric spaces. In a metric space, whitbhe two-dimensional Euclidean
space, one speaks of the neighborhood of a point and meamssallpoints whose distance from
the point is less than some quangfysay. Such neighborhoods are circular. One could use square
neighborhoods as well. However, it is also possible tpasp that the neighborhoods, certain
subsets of a given set of points, are specified in some evay, without the introduction of a
metric. Such spaces are said to have a neighborhood topoligyicfion is a generalization of a
metric space. Felix Hausdorff (1868-1942), in Gizindziige der Mengenleh(Essentials of Set
Theory, 1914), used the notion of a neighborhood (whiithert had already used in 1902 in a
special axiomatic approach to Euclidean plane geometry) andupuit definitive theory of
abstract spaces on this notion.

And so we arrive at the end of the road at our gbgleneral or point set topology. | thought |
would close with the abstract definition for topgyogiven byWikipedia Hopefully the terms used in
the definitions will be less opaque and the redsothe abstraction more understandable. Oneeof th
great accomplishments of 2@entury mathematics was the discovery of how idemsconstructs in
one area could be adapted and generalized to gramidsual insights in another area. Functional
Analysis based on point set topology is one ofsilfgreme examples of this accomplishment.
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WikipediaDefinitions

(Wikipediatopology:) In mathematicdppology (from the Greek , place, and ,
study) is concerned with the properties of space that are presgmedcontinuous deformations,
such as stretching, crumpling and bending, but not teariglyimg.

(Wikipediageneral topology:) In mathematiageneral topologyis the branch of topology
that deals with the basic set-theoretic definitions and conistngctised in topology. It is the
foundation of most other branches of topology, includdifferential topology, geometric
topology, and algebraic topology. Another name for gengpalagy ispoint set topology

The fundamental concepts in point set topology are contjinuigmpactness, and
connectedness:

Continuous functions, intuitively, take nearby pointaéarby points.
Compact sets are those that can be covered by finitely marof sekstrarily small size.
Connected sets are sets that cannot be divided into two petesd far apart.

The words ‘nearby’, ‘arbitrarily small’, and ‘far apart’ cal B made precise by using
[neighborhoods]. If we change the definition of ‘[neighborhood]’, we changeatvtontinuous
functions, compact sets, and connected sets are. Each choicenitibdebr ‘[neighborhood]’ is
called a topology. A set with a topology is called a topaiaigspace.

(Wikipedia topological space:) In topology and related branches of matlosmedi
topological spacemay be defined as a set of points, along with a set of Im@ighoods for each
point, satisfying a set of axioms relating points and rmighhoods. The definition of a
topological space relies only upon set theory and is the gewsral notion of a mathematical
space that allows for the definition of concepts such as uiytinconnectedness, and
convergence. Other spaces, such as manifolds and metric spacespeeciadizations of
topological spaces with extra structures or constraints. Bmirgeneral, topological spaces are a
central unifying notion and appear in virtually every braotimodern mathematics. The branch
of mathematics that studies topological spaces in their ayin is called point set topology or
general topology.
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