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A non-mathematician friend asked me what was topology, in particular point set topology and 

algebraic topology.  Here is my attempt at an explanation.  Perhaps a good high-level summary of the 

idea is from the excellent 1972 book on the history of mathematics by Morris Kline ([1] pp.1158-9): 

A number of developments of the nineteenth century crystallized in a new branch of 

geometry, now called topology but long known as analysis situs. To put it loosely for the moment, 

topology is concerned with those properties of geometric figures that remain invariant when the 

figures are bent, stretched, shrunk, or deformed in any way that does not create new points or fuse 

existing points. The transformation presupposes, in other words, that there is a one-to-one 

correspondence between the points of the original figure and the points of the transformed figure, 

and that the transformation carries nearby points into nearby points. This latter property is called 

continuity, and the requirement is that the transformation and its inverse both be continuous. Such 

a transformation is called a homeomorphism. Topology is often loosely described as rubber-sheet 

geometry, because if the figures were made of rubber, it would be possible to deform many 

figures into homeomorphic figures. Thus a rubber band can be deformed into and is topologically 

the same as a circle or a square, but it is not topologically the same as a figure eight, because this 

would require the fusion of two points of the band. …  

Topology, as it is understood in this century, breaks down into two somewhat separate 

divisions: point set topology, which is concerned with geometrical figures regarded as collections 

of points with the entire collection often regarded as a space; and combinatorial or algebraic 

topology, which treats geometrical figures as aggregates of smaller building blocks, just as a wall 

is a collection of bricks.
1
 Of course notions of point set topology are used in combinatorial 

topology, especially for very general geometric structures. 

Before discussing algebraic topology I thought it prudent to begin with “general topology” (aka 

“point set topology”).   I will try to lead into the subject via a historical path. 

Historical Background 

On another occasion I alluded to the crisis in mathematics caused by the advent of Fourier Series 

in the beginning of the 19
th
 century and how it led to a deeper understanding of mathematics that 

included the origin of point set topology (see references [2] [3] [4]).  But in fact the problems go back 

further to the very origin of calculus in the 17
th
 century where the idea of infinite processes, including 

infinite sums, infinitesimals, and instantaneous rates of change, were challenged from the outset.   

Zeno’s Paradoxes 

This unease actually traced back even further to practically the dawn of real mathematics with the 

Paradoxes of the Greek philosopher Zeno of Elea (c.450 BC): 

                                                      
1
  JOS:  This is a bit obscure.  Perhaps a better distinction is that point set topology is generally concerned with 

local behavior, while algebraic topology addresses global properties.  And algebraic topology does this by 

attaching numbers and algebraic structures to the underlying spaces in such a way as to characterize specific 

properties, such as whether the spaces have holes, and how many holes. 
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Dichotomy Paradox 

That which is in locomotion must arrive at the half-way stage before it arrives at the goal. 

    —as recounted by Aristotle, Physics VI:9, 239b10 

If we say the distance to the goal is D, then the paradox is interpreted as saying first one 

has to travel half the distance (D/2), and then half of the remaining distance (that is, half of 

D/2 or D/4), and so on, ad infinitum.  This is interpreted as forming the infinite sum 

...
16842

++++
DDDD  

and “everyone knows” adding in infinite number of positive quantities will increase without 

bound and so the infinite sum cannot possibly be the distance D. This obviously contradicts 

the physical fact that one can indeed cover the distance D and reach one’s goal.   

 

With one known exception this ancient Greek avoidance of infinite processes persisted for almost 

2000 years and delayed the further advance of mathematics in this area until the arrival of the Middle 

Ages and philosophers like Nicholas of Cusa (1401–1464) who identified the infinite with God.  

Since God existed, so did infinity, and so off they went, ignoring the Greek warnings and developing 

the ideas of calculus with only the vaguest of intuitive ideas about infinite processes (in accordance 

with their religious beliefs). 

The one Greek exception was Archimedes (c.287-212 BC), who used the idea of an infinite sum 

of inscribed triangles to yield the area of a circle (which we will consider below p.5).  However, he 

avoided the direct notion of an actual infinite sum by employing the Eudoxus theory of Exhaustion.  

Nevertheless, his amazingly prescient insights remained ignored until Kepler (1571-1630) in the 17
th
 

century employed them almost 2000 years later in his discovery of the equal areas law. 

Limits – Infinite Series 

All of these infinite processes were eventually “handled” by the idea of “limits,” which was 

codified in the 18
th
 century by mathematicians such as Augustin-Louis Cauchy.  To take a canonical 

example, consider Zeno’s dichotomy paradox that engendered the infinite series 

 1
/2 + 

1
/4 + 

1
/8 + 

1
/16 + … (1) 

(where we have assumed the distance D = 1).  This can be rewritten 

 (
1
/2) + (

1
/2)

2
 + (

1
/2)

3
 + (

1
/2)

4
 + … 

which is of the form  

r + r
2
 + r

3
 + r

4
 + … 

where r = ½.  If we consider a finite sum Sn = r + r
2
 + r

3
 + r

4
 + … + r

n
, then the infinite sum is just 

what happens to the Sn as n = 1, 2, 3, …, that is, as n grows without bound, written n → ∞.  Now  

Sn – rSn = r – r
n+1

 

So  

r(1 – r
n
) 

Sn = 
1 – r 

Since r < 1, as n → ∞, r
n
 → 0 and Sn → r/(1 – r).  For r = 

1
/2, this means Sn →  1.  That is, the partial 

sums Sn approach 1 “in the limit” as n grows arbitrarily large.  So we define the infinite sum in (1) to 



Point Set Topology 181226.doc 3 

be 1, the limit of the sequence Sn.  (This agrees with the physical fact that we can actually cover the 

distance D = 1 after all.) 

Traditionally the infinite sum beginning with 1 and with r < 1 

 1 + r + r
2
 + r

3
 + … + r

n-1
 + … = 1/(1 – r)  (2) 

is called the geometric series.   

If for an infinite series, the sequence of partial sums Sn = a1 + a2 + … + an approaches a limit S as 

n → ∞, we say the series converges and the sum is S.  If it does not approach any limit (grows 

without bound or oscillates toward more than one value like 1 – 1 + 1 – 1 + …), we say the series 

diverges and we cannot assign a sum to it.   

Divergent Harmonic Series 

Notice that if Sn → S, then the nth term an = Sn – Sn-1 → 0.  But an → 0 is a necessary and not 

sufficient condition for convergence, for consider the example of the harmonic series 

 1 + 
1
/2 + 

1
/3 + 

1
/4 + 

1
/5 + … + 

1
/n + …  (3) 

Then an = 1/n → 0, as n → ∞.  Now consider the partial sums 

 Sn = 1 + 
1
/2 + 

1
/3 + 

1
/4 + 

1
/5 + … + 

1
/n  

Note the behavior of the following subsequence of partial sums 

S2 = 1 + 
1
/2 ≥ 1 + 

1
/2 = 1+ 

1
/2 = 1

1
/2 

S4 = 1 + 
1
/2 + 

1
/3 + 

1
/4 ≥ 1 + 

1
/2 +(

1
/4 + 

1
/4) = 1+ 

1
/2 + 

1
/2 = 2 

S8 = 1 + 
1
/2 + 

1
/3 + 

1
/4 + … + 

1
/8  ≥ 1 + 

1
/2 + (

1
/4 + 

1
/4) + (

1
/8 +

 …
 + 

1
/8) = 1+ 

1
/2 + 

1
/2 + 

1
/2  = 2

1
/2 

… 

S2
k

    ≥    = (k+2)/2 

This shows the subsequence S2
k
 grows without bound.  The whole sequence Sn cannot be converging 

to a finite limit if a subsequence is growing without bound.  In fact, since for all n, Sn < Sn+1, all the 

other members of the sequence are being carried upwards by this increasing subsequence, so that the 

whole sequence grows without bound, that is, diverges.   

The difference between the geometric series in (2) and the harmonic series in (3) is that the nth 

term r
n
 in (2) goes to zero much faster than 1/n in (3).  Intuitively this means that eventually higher 

terms in the geometric series are negligible and can be ignored, but in the harmonic series the higher 

terms, though getting smaller, still contribute a non-negligible amount that accumulates to the point 

where it feeds back into the sum from the earlier terms. 

Cauchy Definition of Limit 

The way Cauchy codified this limit process in the 18
th
 century can be described as follows.  S is 

called the limit of an infinite sequence of terms Sn if no matter how small a tolerance ε > 0 is chosen, 

one can find an integer N large enough such that for all n > N, Sn is within that tolerance ε of S, that 

is, |S – Sn| < ε.  |S – Sn| is the absolute value of the difference between S and Sn.  That is, -ε < S – Sn < 

ε or S – ε < Sn < S + ε.  This can be visualized along the real line by 

 

 S – ε S Sn S + ε 
 | | | | 

4 2 

ε 
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Another way of saying this is that eventually all the Sn will be in an open interval (S – ε, S + ε) 
containing S.  (An open interval (a, b) of the real line consists of all values x such that a < x < b.  A 

closed interval [a, b] consists of all values x such that a ≤ x ≤ b.)  So Cauchy reduced the question of 

finding limits to solving sets of inequalities.   

Even though the religious Renaissance mathematicians might believe in an actualized infinity 

(Nicholas of Cusa said a circle was a polygon with an infinite number of sides), the concept of a limit 

avoids that idea, as did the method of Exhaustion.  The best English equivalent would be the word 

“destination.”  It connotes an inevitable goal that has not yet been reached.  It has an existence, but it 

only has meaning in relation to an ongoing process, not yet completed. 

Geometric Series Example 

To illustrate Cauchy’s definition of a limit, consider again the geometric series in equation (2) 

and its partial sums Sn = 1 + r + r
2
 + r

3
 + … + r

n-1
.  We claim Sn → S = 1/(1 – r), as n → ∞.  Now  

r

r

r

r

r
SS

nn

n
−

=
−

−
−

−
=−

11

1

1

1
 

We assumed r < 1 and implicitly that r > 0.  Let’s just assume |r| < 1, that is -1 < r < 1.  Notice that we 

can assume |r| > 0, since if r = 0, then S – Sn = 0 for all n, and Sn = S = 1, and so 1 is trivially the limit.  

For any number a, if 0 < a < 1, then 0 < a
2
 < a, and in fact 0 < a

n+1
 < a

n
.  Hence, we can make a

n
 as 

small as we wish for sufficiently large n (there are some details here we ignore).  Similarly, if we are 

given an arbitrarily small number ε > 0, we can find a suitably large N such that for all n > N, |r|
n
 = |r

n
| 

< ε |1 – r|.  Then  

ε
ε

=
−

−
<

−
=−

r

r

r

r
SS

n

n
1

1

1
 

And so S satisfies the limit definition.   

Numerical Example.  Suppose r = 
1
/2 and Sn = 1 + (

1
/2) + (

1
/2)

2
 

+ (
1
/2)

3
 + … + (

1
/2)

n-1
.  How big should N be so that for all n ≥ N, 

|S – Sn| < 0.0005, that is, Sn approximates S (= 2) accurately to 

three decimal places?  This means no matter how many terms are 

added after SN, they will not contribute enough to cause rounding 

into the third decimal place. 

So we want |r
n
| < ε |1 – r|, that is,  

(
1
/2)

n
 < 5/10

4
 (

1
/2)  or 10

4
/5 < 2

n-1
 or 10

3
 < 2

n-2
 

This means we want n > 2 + 3/log102 = 11.96.  So N = 12 should 

do the job.  If we examine Table 1, we can see sure enough, S12 is 

within 0.0005 of S = 2.   

So we now have a way to decide if an infinite sum can have a 

finite value assigned to it in a meaningful way, namely its partial 

sums must have a limit as n grows without bound.  A similar limit 

idea can be given for defining areas and volumes.  

Table 1 

n Sn S – Sn 

1 1.000000 1.000000 

2 1.500000 0.500000 

3 1.750000 0.250000 

4 1.875000 0.125000 

5 1.937500 0.062500 

6 1.968750 0.031250 

7 1.984375 0.015625 

8 1.992188 0.007812 

9 1.996094 0.003906 

10 1.998047 0.001953 

11 1.999023 0.000977 

12 1.999512 0.000488 
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Limits – Area 

Archimedes (c.287-212 BC).   

Almost 2500 years ago Archimedes computed the area of a 

circle of radius r as πr
2
 where π is the ratio of the circumference C 

of the circle to its diameter D = 2r. He did this by inscribing 

regular polygons of an increasing number of sides inside the circle 

and letting the number of sides increase without bound.  The 

polygons were built starting with two triangles based on the 

diameter of the circle and inscribed in the corresponding 

semicircles.  Subsequent polygons are generated by adding 

triangles based on the sides of the previous triangles and inscribed 

in the remaining space in the circle (see Figure 1).  The nth 

polygon is the perimeter of the outer edges of the last set of 

triangles added in the nth step.  If An represents the areas of the 2
n
 

triangles added in the nth step (shown in a common color in Figure 

1), then the area of the nth inscribed regular polygon Pn is 

 Pn = A1 + A2 + A3 + … + An (4) 

Rather than attempt an infinite sum, Archimedes argued using the Exhaustion Principle.  He 

asserted that the sum was the area T of a triangle with altitude the radius r and base the circumference 

C of the circle, that is, T = 
1
/2 r C = 

1
/2 r (πD) = π r

2
.  He then argued by contradiction, that is, he 

supposed the area A of the circle was greater than T, T < A, and claimed that he could take a polygon 

with a sufficiently large number of sides n so that Pn is so close to A that T < Pn < A.  But then he 

showed that all the areas of the inscribed polygons had to be less than the area T = πr
2
—and so a 

contradiction.  He then arrived at a similar contradiction by supposing A < T and using a series of 

circumscribing polygons that shrank to the area of the circle inscribed in all these polygons.  Thus the 

only non-contradictory answer was that A had to equal T. 

Numerical Example.  I performed 

a computer implementation of equation 

(4) assuming a unit radius (r = 1).  This 

means the area of the circle should just 

be π = 3.141592654... (to 9 decimal 

places).  Table 2 shows the results.  

After 10 steps, the area of polygon P10 

is already good to 5 decimal places (the 

error π r
2
 – P10 < 0.000005).  This is 

pretty fast convergence.   

Out of curiosity I also computed 

the successive ratios of the incremental 

areas An-1/An.  Very quickly the ratios 

tended toward 
1
/4.  So the sum of 

incremental areas approximated a 

geometric series with ratio 
1
/4.  Why this is of interest is that Archimedes carried out a similar 

construction of a series of inscribed triangular areas to find the area bounded by a parabola and line 

crossing its axis.  In that case, he proved directly that the ratios of successive areas were all exactly 

equal to 
1
/4, and then he computed the sums of the resulting geometric series!  (It is hard to believe his 

achievements lay fallow for almost 2000 years.) 

 

Figure 1    Archimedes Circle 

Computation 

Table 2    Output for r = 1 

Step 

n 

Area 

Increment 

An 

Area Pn 

Area Diff  

ππππr
2
 - Pn 

Increment 

Ratio  

An-1/An 

1 2.0000000 2.000000 1.1415927  

2 0.8284271 2.828427 0.3131655 0.4142100 

3 0.2330403 3.061467 0.0801252 0.2813000 

4 0.0599777 3.121445 0.0201475 0.2573700 

5 0.0151033 3.136548 0.0050442 0.2518200 

6 0.0037827 3.140331 0.0012615 0.2504500 

7 0.0009461 3.141277 0.0003154 0.2501100 

8 0.0002366 3.141514 0.0000789 0.2500300 

9 0.0000591 3.141573 0.0000197 0.2500100 

10 0.0000148 3.141588 0.0000049 0.2500000 

11 0.0000037 3.141591 0.0000012 0.2500000 

r 
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17
th

 Century (The Scientific Revolution) 

With the embrace of the infinite after the Middle Ages and the Renaissance, mathematicians in 

the 17
th
 century could contemplate infinite processes directly.  In the effort to compute general areas, 

an early idea was the notion of “indivisibles” as promulgated by Cavalieri ([1] pp.349-350): 

Bonaventura Cavalieri (1598-1647), a pupil of Galileo and professor in a lyceum in Bologna, 

was influenced by Kepler and Galileo and urged by the latter to look into problems of the 

calculus. Cavalieri developed the thoughts of Galileo and others on indivisibles into a geometrical 

method and published a work on the subject, Geometria Indivisibitibus Continuorum Notta 

quadam Ratione Promota (Geometry Advanced by a thus far Unknown Method, Indivisibles of 

Continua, 1635). He regards an area as made up of an indefinite number of equidistant parallel 

line segments and a volume as composed of an indefinite number of parallel plane areas; these 

elements he calls the indivisibles of area and volume, respectively. Cavalieri recognizes that the 

number of indivisibles making up an area or volume must be indefinitely large but does not try to 

elaborate on this. Roughly speaking, the indivisibilitists held, as Cavalieri put it in his 

Exercitationes Geometricae Sex (1647), that a line is made up of points as a string is of beads; a 

plane is made up of lines as a cloth is of threads; and a solid is made up of plane areas as a book is 

made up of pages. However, they allowed for an infinite number of the constituent elements. 

Cavalieri’s method or principle is illustrated by the 

following proposition, which of course can be proved in other 

ways. To show that the parallelogram ABCD (Fig. 17.7) has 

twice the area of either triangle ABD or BCD, he argued that 

when GD = BE, then GH = FE. Hence triangles ABD and BCD 

are made up of an equal number of equal lines, such as GH and 

EF, and therefore must have equal areas. … 

Cavalieri’s indivisibles were criticized by contemporaries, 

and Cavalieri attempted to answer them; but he had no rigorous justification. At times he claimed 

his method was just a pragmatic device to avoid the method of exhaustion. Despite criticism of 

the method, it was intensively employed by many mathematicians. Others, such as Fermat, Pascal, 

and Roberval, used the method and even the language, sum of ordinates, but thought of area as a 

sum of infinitely small rectangles rather than as a sum of lines. [JOS: my emphasis] 

This last statement refers to “infinitesimals,” which we will discuss in a moment (below p.8).  But 

first we need to understand some other mathematical developments that came to fruition in the 17
th
 

century that played a role in the story of infinite processes.  

Symbolic Algebra – Coordinate Systems – Functions 

Symbolic Algebra (see Figure 2). Since Babylonian and Egyptian times, cultures had evolved 

symbols (numerals) to represent numbers, but nothing more.  There were no symbols for arithmetic 

operations such as addition, subtraction, multiplication, division, raising to a power, or taking roots, 

or for equality.  What in modern times would be called algebraic word problems were all there was—

rhetorical statements of problems with no translation into symbolic equations.  Solutions were also 

verbal or geometric constructions.   

For centuries mathematicians were aware of problems involving the solution of quadratic and 

cubic equations, but they were solved by geometric constructions.  Ever since Pythagoras (c.500 BC) 

is credited with discovering that the hypotenuse of a right triangle with unit sides is irrational (√2), 

the Greeks  limited their explicit use of numbers to whole numbers and ratios of whole numbers (via 

proportions), that is, rational numbers.  Irrational numbers were only represented as lengths of lines, 

or areas or volumes and so manipulated through geometric constructions, usually with compass and 

ruler alone.  A solution to a word problem involving quadratic equations, for example, was found as a 

length of a line in a geometric figure that was the result of a construction. 
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Figure 2    Timeline of Symbolic Algebra Development 
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But with the pressures of mercantilism in the Late Middle Ages and Renaissance and the arrival 

of the Hindu-Arabic numerals, including 0, calculators wanted more than just a mechanical means of 

computation, such as an abacus.  And so algebraic symbols and notation arose during this period, 

coming to fruition at the beginning of the 17
th
 century.  For example, Viète (c. 1591) is credited with 

employing the (capitalized) letters toward the beginning of the alphabet (actually, consonants) to 

represent constants (e.g., B, C, D, etc.), and the letters toward the end of the alphabet (actually, 

vowels) to represent unknowns and variables (e.g., A, E, I, O, U).  (But still all numbers were 

assumed positive, to reflect their physical origin.) 

Coordinate system.  French mathematicians Pierre de Fermat (1607-1665) and Rene Descartes 

(1596-1650) are credited with using the variables x, y in algebraic expressions to represent geometric 

figures, such as parabolas, hyperbolas, etc.  How this began was similar to an aspect of the discussion 

above in Cavalieri’s proof that the areas of the two triangles resulting from a diagonal of a 

parallelogram are equal (Figure 17.7).  Cavalieri associated the varying line GH with the varying line 

DG. Fermat and Descartes would label the length of the line GH as y and the length of the line DG as 

x and thus have a way of designating the point H on the line by the pair of number x, y, called 

coordinates.  Eventually, figures were oriented so that the x-coordinate was along a horizontal line (x-

axis) and the y-coordinate (ordinate) was along a vertical line (y-axis).  Then every point on the curve 

could be represented by a pair of coordinates (x, y).  Descartes explored this arrangement quite 

extensively and showed how procedural manipulations of algebraic symbols could find solutions to 

problems that paralleled the geometric methods of constructing the solution, only much more easily.  

We give him  credit for this approach by calling the coordinate system, Cartesian, and the subject 

matter, analytic geometry. 

Functions 

The dependency of the variable y on the 

variable x that we noted above was recognized by 

others as well, such as Galileo (1564-1642).  This 

was the origin of the function concept.  We say y is 

a function of x if to each value of x  (independent 

variable) we can assign by some rule a unique 

value for y (dependent variable).  Initially the rule 

was thought of as a formula or equation relating 

the variables, such as y = 2x
2
 for a parabola, y = 

1/x for a hyperbola, or Galileo’s formula s = 
1
/2 gt

2
 

for a body falling a distance s during a time t where 

g is the constant of acceleration.  Later the 

functional relationship was written more abstractly 

as y = f(x) where f denoted the function.  The 

curve of points (x, y) that corresponds to the 

functional relationship is called the graph of the 

function (Figure 3). 

Limits – Integration  

Now we return to the challenge of trying to find areas inside regions bounded by curves.  

Consider the problem of trying to find the area under a curve (graph of y = f(x)) between the vertical 

lines x  = a and x = b and the x-axis (see Figure 4(a)).  Instead of using lines as Cavalieri did, we shall 

consider a set of n narrow rectangles inscribed in the region of vanishingly small width ∆x (“∆” 

represents “small change in”) and height f(x) where the rectangle just touches the graph y = f(x).  We 

then sum these rectangles to get an approximation to the area under the curve: 

 
Figure 3    Graph of y = 1/x 

(x, y) = (2, 1/2) 

x y 
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Area An = Σi=1
n
 ∆Ai = Σi=1

n
 f(xi)∆x 

As we shrink the width of the rectangles and thus increase the number of rectangles (∆x → 0 and 

n → ∞), the approximating sum of rectangles approaches the actual area in the limit.  We call this 

limit the integral of f(x) from a to b and denote it ∫∫∫∫a
b
 f(x)dx (see Figure 4(b)).   So we have 

Σi=1

n
 f(xi)∆x    →→→→    ∫∫∫∫a 

b
 f(x)dx 

   as  ∆x → 0, n → ∞ 

(The capital Greek letter for s, sigma Σ, is used to denote a sum, possibly infinite, of discrete entities.  

Leibniz, Newton’s independent cofounder of calculus, used the notation on the right for the integral 

where the Greek sigma becomes an elongated s, ∫∫∫∫.  And Leibniz also converted the ∆x to dx, which he 

called a differential and imagined it as an infinitesimal entity, that is, an infinitely small value that 

was not zero!—the more recent embodiment of Cavalieri’s indivisible.) 

There is an amazing and wonderful way to 

calculate integrals called the Fundamental 

Theorem of Calculus that we don’t have time to go 

into now, unfortunately. 

As an illustration, a very important function 

can be represented by the area under a curve.  This 

is the natural logarithm of x, denoted ln(x).  It is 

the logarithm to the base e (Euler’s constant)
1
 and 

is given by the area under the hyperbola y = 1/t 

from 1 to x.  That is, if we allow the right hand 

endpoint of the interval of integration to vary, we 

have a rule that assigns to each value of x an area 

from 1 to x, and this number is ln(x).  With a little 

bit of thought, we can see that  

ln(xy) = ln(x) + ln(y), 

which is the essential logarithm property. 

                                                      
1
  JOS:  In other words, y = ln x = loge x also means e

y
 = x.  Euler’s constant e is the limit of the expression 

(1 + 
1
/n)

n
 as n → ∞, which shows up in computations of compound interest and in many other places. 

 
(a) 

 
(b) 

Figure 4 

 

Figure 5    Natural Logarithm of x: ln(x) 
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The question soon arises as to what types of functions have integrals (allow the process of 

approximating sums of rectangles to have a limit).  Suppose we consider the function  

which is our hyperbola for x > 0 where we have added the value 0 at x = 0.  If we divide the closed 

unit interval [0, 1] (0 ≤ x ≤ 1) into n equally spaced intervals (∆x = 1/n), then Σ1
n
 f(x) ∆x = 

Σ1
n
 f(1/n) 1/n = n f(1/n) 1/n = f(1/n) = 1/(1/n) = n, which grows without bound.  The limit and 

therefore the integral does not exist. 

One characteristic of this example is that we cannot draw its graph from x = 1 on the right to 

x = 0 on the left without lifting our pencil and jumping to (0, 0). A function with the property of being 

able to draw its graph without lifting the pencil is said to be continuous.  

It turns out that if a function is continuous over a closed interval [a, b], then it has an integral 

there.  But even some discontinuous functions can have integrals, so long as they are bounded.  It was 

the study of the nature of these points of discontinuity that was one of the motivations for point set 

topology.  

Limits – Continuous Functions 

Again Cauchy codified the meaning of a 

continuous function which we turn to now.  It is no 

surprise that it is based on the limit idea.  A 

function y = f(x) is said to be continuous at a value 

x = a, if it is defined there (f(a) exists), f(x) 

approaches a limit L as x approaches a, and that 

limit L = f(a).  That is, f(x) → f(a) as x → a.  Using 

the limit terminology, this means no matter how 

small a tolerance ε > 0 we place around f(a) we can 

find a tolerance δ > 0 around a such that whenever 

| x – a | < δ, we have | f(x) – f(a) | < ε.  (By the way, 

it is perhaps unfortunate that traditionally the 

tolerances are represented by the Greek letters 

epsilon ε and delta δ.)  In terms of open intervals, 

we can say that given any small open interval 

(f(a) – ε, f(a) + ε) around f(a) we can find a small 

open interval (a – δ, a + δ) around a such that f [(a – 

δ, a + δ)] ⊂ (f(a) – ε, f(a) + ε).   (For sets A and B, 

the expression f(A) ⊂ B means for every x ∈ A, f(x) 

∈ B, where ∈ means “in” or “is an element of”.)  

See Figure 6. 

Examples of Discontinuous Functions 

Right off we can cite the hyperbola y = 1/x as 

discontinuous at x = 0, since the limit as x → 0 does 

not exit.  Similarly the potential sum of the 

geometric series 1/(1 – x) is discontinuous at x = 1 

because again the limit as x → 1 does not exit.  

Figure 7 shows a generic discontinuous case where 

even though the limit L exists and the function is 

f(x) =
 1/x   0 < x ≤ 1 

  0 x = 0 

 
Figure 6    Continuous Function at a Point a 

 
Figure 7    Discontinuous at x = a 
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defined at x = a, f(a) ≠ L. 

Figure 8 shows the graph of the function 

f(x) = 1 + sin(2π/x) for 0 < x ≤ 1 and f(0) = 1.  

f(x) is defined and bounded on the closed 

interval [0, 1] but it has no limit as x → 0 

since it oscillates between 0 and 2 infinitely 

often (the graph could not be shown all the 

way to 0). 

Finally there is the canonical example of a 

function that is continuous nowhere. 

f(x) is defined everywhere on the real line, but is continuous at no point.  This is because of the 

property of the real line that between every two rationals there is an irrational and between every two 

irrationals there is a rational.  So if a is an irrational point so that f(a) = 0, then as x → a, there will 

always be a rational point z between x and a so that f(z) = 1.  Therefore f(x) /→  0 = f(a).  Similarly if 

a is a rational point so that f(a) = 1.  As x → a, there will always be an irrational point z between x 

and a so that f(z) = 0.  Therefore f(x) /→  1 = f(a).  

Limits – Sequences of Points 

Decimal expansions.  

Recall how we can obtain a decimal 

expansion for √2.   

1
2
 = 1 < 2 < 4 = 2

2
  

⇒ 1 < √2 < 2 

1.4
2
 = 1.96 < 2 < 2.25 = 1.5

2
  

⇒ 1.4 < √2 < 1.5 

1.41
2
 = 1.9881 < 2 < 2.0164 = 1.42

2
  

⇒ 1.41 < √2 < 1.42 

1.414
2
 = 1.999396 < 2 < 2.002225 = 1.415

2
  

⇒ 1.414 < √2 < 1.415 

Figure 9 shows geometrically what is 

happening.  First we find that √2 lies 

between 1 and 2.  We divide the interval 

between 1 and 2 into 10 parts each of width 

1/10.  We find √2 lies between 1.4 and 1.5, 

so we divide that interval again into 10 parts, now of width 1/100.  We keep going in this way 

keeping √2 in an interval 1/10 the length of the previous.  Table 3 shows that the left-hand endpoints 

of the intervals approximate √2 better and better, and these successive endpoints represent the 

decimal expansion of √2.  Figure 10 shows this graphically as well. 

 

2.0

1.5

1.0

0.5

0.0

1.00.80.60.40.20.0

 

Figure 8    y = 1 + sin (2ππππ/x) 
f(x) =

  1   x rational 

  0 x irrational 

 

Figure 9    Decimal expansion for √2 
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Table 3 

√2 – 1.4  < 1.5 – 1.4  = .1 = 1/10 

√2 – 1.41  < 1.42 – 1.41 = .01 = 1/10
2
 

√2 – 1.414  < 1.415 – 1.414  = .001 = 1/10
3 

√2 – 1.4142  < 1.4143 – 1.4142  = .0001 = 1/10
4
 

In fact √2 is the only point which belongs to 

all the nested intervals whose left endpoints yield 

the decimal expansion. 

Thus for each point on the line we get a 

unique sequence of nested intervals containing 

only that point in common, and the left endpoints 

of the intervals yield a decimal expansion for the 

point (repeating or non-repeating).  Conversely, for any decimal expansion, there is a corresponding 

sequence of nested intervals taking their left endpoints from the expansion, each having one tenth the 

length of its predecessor, and all having only one point in common.   

Thus we get a correspondence between all the points on the line and decimal expansions, where 

repeating decimals correspond exactly to the points representing rational numbers and non-repeating 

expansions correspond to irrational numbers.  And so every real number corresponds to a unique 

point on the number line. 

Example: 0.9999… “=” 1.   

The nested interval idea provides another way of 

seeing the basis for the seemingly mysterious statement 

that the number 1 has an alternative decimal expansion as 

0.999999…. (Figure 11).  We see that the 9s in the 

decimal expansion mean we are looking at the right-most 

interval within the closed interval [0, 1] and that means 

the number 1 is always included as the right endpoint of 

each subinterval.  Clearly it is the only number that will 

be included in all the nested intervals, and so 0.999… 

represents its decimal expansion.  But so does 1.0000….  So we have an instance where our nested 

interval definition provides two possible decimal expansions for the same number.  Therefore they 

must be equivalent.  (We didn’t explicitly discuss what happens when the point of interest turns out to 

land on an endpoint of our subintervals.) 

Limit Points 

A point on the number line corresponding to an irrational number has the interesting 

characteristic of being the limit of a sequence of points corresponding to rational numbers (left 

endpoints of intervals).  A point x on the number line is called a limit point of a set A, if every open 

interval containing x also contains a point from A.  For example, we saw that for every open interval 

(√2 – 1/10
n
, √2 – 1/10

n
) of √2, we could find a smaller (by a tenth) closed interval [√2 – 1/10

n+1
, √2 – 

1/10
n+1

] ⊂ (√2 – 1/10
n
, √2 – 1/10

n
) so that the left endpoint (term in the rational decimal expansion) is 

contained in that open interval.  Therefore, the irrationals correspond to limit points of the rationals.   

Any set that contains all its limit points is called closed. Notice that a closed interval [a, b] is a 

closed set using this definition.  For if c is any point not in [a, b], say c < a (Figure 12), then choose 

 

Figure 10    Nested intervals all containing √2 

 
Figure 11    0.9999… = 1 
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δ = |c – a|/2.  The open interval (c – δ, c + δ) contains no points of [a, b] and so c cannot be a limit 

point of [a, b].  (A similar argument holds if b < c.) That means [a, b] contains all its limits points, 

and so is closed.  (Notice that the endpoints, a and b, are limit points of [a, b].) 

Limits – Sequences of Functions 

Power Series 

We return to a discussion of functions.  We showed above (Geometric Series Example, p.4), 

replacing r by x, that 1/(1 – x) = 1 + x + x
 2

 + x
 3

 + … so long as |x| < 1.  This infinite series is of the 

form S(x) = a0 + a1 x + a2 x
 2

 + a3 x
 3

 + …  and is called a power series.  Its partial sums are 

polynomials Sn(x) = a0 + a1 x + a2 x
 2

 + a3 x
 3

 + … + an-1 x
 n-1

.  Then the geometric series is a power 

series where all the coefficients ak = 1. 

Example – Geometric Series. Figure 13 shows the graph of 1/(1 – x) with some of the partial 

sums.  Several things are of interest.  We can see that the partial sum functions approximate 1/(1 – x) 

better and better throughout the open interval (-1, 1).  But strange things happen at the endpoints.  Of 

course, at 1 each partial sum Sn(1) = n, a finite number, which cannot approximate the unbounded 

1/(1 – x) there.  Still the Sn(1) are growing without bound and trying to catch up to 1/(1 – x), as it 

were.  The left hand endpoint -1 is the really interesting feature.  The function 1/(1 – x) is actually 

defined there and is 1/2.  But the partial sums Sn(1) = 
1
/2 + (-1)

n-1
 
1
/2 oscillate between 1 and 0, that is, 

the geometric series looks like 1 – 1 + 1 – 1 + … at x = -1, which diverges.  Nevertheless, the partial 

sum functions Sn(x) do get closer to 
1
/2 as x → -1, but turn away at the last moment to reach either 1 

 

Figure 12    Proof [a, b] is a closed set 

 
Figure 13    Partial sum functions converging to geometric series on (-1, 1) 
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or 0 at the endpoint, depending on whether n is odd or even. 

Example – Logarithmic Series.  It turns out that ln(1 + x) has a power series expansion 

ln(1 + x) = x – x
 2
/2 + x

 3
/3 – x

 6
/6 +… + (-1)

n-1
 x

n
/n + … 

which also converges for | x | < 1.  In fact it also converges at its right endpoint x = 1.  That series is 

an alternating series 1 – 1/2 + 1/3 – 1/4 + … which does converge.  At the left endpoint, x = -1, we 

have the negative of the harmonic series, –1 – 1/2 – 1/3 –1/4 – …, which we already know diverges.  

Figure 14 shows the graph of ln(1 + x) and some partial sum functions Sn(x).  What is really strange 

from the plots is the behavior of the partial sum functions outside the interval (-1, 1] on the right.  

They seem to abruptly turn off in all directions. 

There is something curious about the interval of convergence for the power series.  We have seen 

both examples are symmetric about 0.  If we consider a more general power series at a point x0 

different from 0, it takes the form 

S(x – x0) = a0 + a1 (x – x0) + a2 (x – x0)
2
 + a3 (x – x0)

3
 + … 

Our previous expression was just the power series when x0 = 0.  Note S(0) = a0, so S(x) or S(x – x0) 

converges for at least one point, namely, x = x0.  Now we have the important result, as stated in 

Wikipedia: “If x0 is not the only convergent point, then there is always a number r with 0 < r ≤ ∞ such 

that the series converges whenever |x − x0| < r and diverges whenever |x − x0| > r. The number r is 

called the radius of convergence of the power series.”  (“r = ∞” means the series converges 

everywhere along the real line.)   So a power series will always converge in a symmetric interval 

about x0. Therefore both of our example series have a radius of convergence = 1. 

An amazing result is that all the basic functions of interest in calculus have power series 

expansions : 

e
x
  = 1 + x + x

 2
/2! + x

 3
/3! + … + x

n
/n! + … 

sin x  = x – x
 3
/3! + x

 5
/5! –  x

 7
/7! +… + (-1)

n
 x

2n+1
/(2n+1)! + … 

 
Figure 14    Partial sum functions converging to ln(1 + x) series on (-1, 1] 
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cos x  = 1 – x
 2
/2! + x

 4
/4! –  x

 6
/6! +… + (-1)

n
 x

2n
/(2n)! + … 

ln(1 + x) = x – x
 2
/2 + x

 3
/3 – x

 6
/6 +… + (-1)

n
 x

n
/n + … 

where n = 0, 1, 2, … and n! = n(n – 1)(n – 2) … 3.2.1.  For example, 5! = 5.4.3.2.1 = 120.  To satisfy 

the schemata, we define 0! = 1.   

So we can consider all the basic functions of interest in calculus as being “infinite” polynomials.  

We can add, subtract, multiply, and divide power series like polynomials.  But more powerfully we 

can integrate (and differentiate, which we have not discussed) like polynomials, which is easy.  This 

is because    

 Sn(x)  →  S(x)   ⇒   ∫∫∫∫  Sn(x)dx  → ∫∫∫∫  S (x)dx (4) 

This is effectively the approach Newton took in his calculations with the early calculus.   

For example, using the geometric power series (slightly modified with + x) 

1/(1 + x) = 1 – x + x
2
 – x

3
 + … 

we have  

ln(1 + x) = ∫∫∫∫  1/(1 + x) dx =  ∫∫∫∫  (1 – x + x
2
 – x

3
 + … )dx = x – x

 2
/2 + x

 3
/3 – x

 6
/6 +… 

We have ignored whether all these operations are legal, that is, whether all the various limits, 

such as in equation (4), exist. As mathematicians began to worry about this, they discovered a 

condition that resolved the problem, to be discussed next.  

Uniform convergence 

When we discussed limits for sequences before, we were restricted to numbers, not functions.  

We said a sequence of numbers Sn had a numerical limit S, if no matter how small an ε > 0 we chose, 

there would be an N so large that for all n > N, | S – Sn | < ε.  This idea still works for functions in the 

following way.  For each value of x in the interval I of convergence, the Sn(x) form a sequence of 

numbers approaching S(x) in the limit.  So then we would write given ε > 0, there would be an N so 

large that for all n > N, | S(x) – Sn(x) | < ε.  The key here is that in general N depends on x.  That is, 

for a fixed ε > 0, we might have to choose a different large N for each choice of x, since there would 

be a different resulting sequence of numbers.  On the other hand, it might happen that one N would 

work for all the x in the interval I of interest.  That is, for all n > N, and for all x in the interval I, 

| S(x) – Sn(x) | < ε.  Equivalently, this would be for all n > N, 

S(x) – ε < Sn(x) < S(x) + ε 

for all x ∈ I.  This latter type of convergence is 

called uniform convergence of a sequence of 

functions. The situation is illustrated in Figure 

15.  An equivalent way of expressing this is to 

say given any ε > 0, there is an N so large that 

for all n > N, max x ∈ I | S(x) – Sn(x) | < ε. 

It can be shown that if r is the radius of 

convergence of a power series around x = x0 

with partial sum functions Sn(x), then the Sn 

converge uniformly to the sum S on any closed 

interval  [a, b] ⊂ (x0 – r,  x0 + r).  And so Sn  →  

S uniformly  ⇒   ∫∫∫∫a
b
 Sn  → ∫∫∫∫a

b
 S  (equation (4)). 

 
 

Figure 15    Uniform convergence 
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Metric Spaces 

We have almost reached our goal of describing point set topology.  All the things we have 

discussed culminated in the beginning of the 20
th
 century with a beautiful abstraction that was 

enormously fruitful.  

Suppose we designate the set of continuous functions on a closed interval [a, b] by C[a, b].  Then 

as we mentioned above (p.10) every function in C[a, b] has an integral.  Therefore the integral defines 

a “function” (transformation) F from the set C[a, b] to the real numbers IR, written  

 F : f ∈ C[a, b] →  ∫∫∫∫a
b
 f ∈ IR (5) 

Now we need to make explicit what we mean by fn → f  ⇒  F(fn) → F(f) (equation (4)) which looks 

very much like a continuity criterion. 

First notice that the expression | x – y | where x and y are two real numbers measures the distance 

between them along the real line.  We might alternatively write this d(x, y) .  Then this distance 

d(x, y) ∈ IR has the following properties: 

(1) d(x, y) = d(y, x) ≥ 0  

(2) d(x, y) = 0 if and only if x = y 

(3) d(x, y) ≤ d(x, z) + d(z, y)  for any other real number z  (the triangle inequality) 

In all the arguments above where we used the absolute value | x – y |, we could have used d(x, y).  

According to Kline ([1] p.1079) this general, axiomatic definition of distance was presented by the 

French mathematician Maurice Fréchet in the beginning of the 20
th
 century and is called a metric.  

Any space on which a metric is defined is called a metric space.  All the notions of limits of 

sequences and variables, including continuity, that we discussed above carry over into metric spaces 

(just change | x – y | to d(x, y)). 

For example, the distance between points 

on the real number line IR can be generalized to 

distance between points in the plane IR 
2
 or in 3-

dimensional space IR 
3  
.  Suppose P and Q are 

two points in the plane IR 
2
 with coordinates 

(x1, y1) and (x2, y2), respectively.  Then define 

the distance between them d(P, Q) using the 

Pythagorean Theorem by 

 d(P, Q) = [ | x1 – x2 |
2
 + | y1 – y2 |

2
 ]

½ 
 

(See Figure 16) It is not hard to show d(P, Q) 

satisfies the properties (1) – (3) for a metric on 

IR 
2
.  d(P, Q) is called the Euclidean metric.  

Notice that if P and Q are restricted to the real 

line IR, then d(P, Q) = | x1 – x2 |, the original 

absolute value metric. 

Fréchet defined a d(f, g) on C[a, b] by   

 d(f, g) = max x ∈ [a, b] | f(x) – g(x) |  

He then showed d(f, g) satisfied all the properties (1) – (3) for a metric on C[a, b].  This is sometimes 

called the max metric or uniform metric and it captures the idea of uniform convergence.  From the 

discussion above we saw that with uniform convergence we can essentially ignore the independent 

variables x ∈ [a, b]. We can now write fn → f to mean that for every ε > 0, we can find an N such that 

 
Figure 16    Euclidean metric in IR 

2
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for all n > N, d(f, fn) < ε.  Then the real-valued transformation F can be shown to be continuous using 

the max metric.  That is, F is continuous at f if for every ε > 0, we can find a δ > 0 such that if 

d(g, f) < δ, then d(F(g), F(f)) < ε, where the second metric d( , ) is just the absolute value metric on 

the reals.  

It is possible to define other metrics on C[a, b].  For example,  

 d(f, g)2 = [ ∫∫∫∫a
b
 | f(x) – g(x) | 

2
 dx ]

½
  

is called the L2 metric and is the function analog of the Euclidean metric.  The convergence of 

Fourier series is defined with the L2 metric. 

We can also couch these ideas in terms of neighborhoods.  Define a neighborhood N(p, r) of a 

point p in a metric space to be the set of points q in the space such that d(p, q) < r, for some r > 0.  

Then a function f: X → Y from one metric space X to another Y is continuous at p in X if for every 

neighborhood N(f(p), ε) of f(p) in Y we can find a neighborhood N(p, δ) of p in X such that 

f (N(p, δ)) ⊂ N(f(p), ε). 

Fréchet reduced the complicated idea of a function to a point in some metric space.  We can talk 

about limit points and closed sets in the function space C[a, b].  Fréchet’s abstraction launched one of 

the most fruitful mathematical pursuits in the 20
th
 century called functional analysis.   

Topological Spaces 

From Kline’s history ([1] pp.1159-60): 

The origins of point set topology have already been related (Chap.46, sec. 2). Fréchet in 1906, 

stimulated by the desire to unify Cantor’s theory of point sets and the treatment of functions as 

points of a space, which had become common in the calculus of variations, launched the study of 

abstract spaces. The rise of functional analysis with the introduction of Hilbert and Banach spaces 

gave additional importance to the study of point sets as spaces. The properties that proved to be 

relevant for functional analysis are topological largely because limits of sequences are important. 

Further, the operators of functional analysis are transformations that carry one space into another. 

 As Fréchet pointed out, the binding property need not be the Euclidean distance function. He 

introduced (Chap. 46, sec. 2) several different concepts that can be used to specify when a point is 

a limit point of a sequence of points. In particular he generalized the notion of distance by 

introducing the class of metric spaces. In a metric space, which can be two-dimensional Euclidean 

space, one speaks of the neighborhood of a point and means all those points whose distance from 

the point is less than some quantity ε, say. Such neighborhoods are circular. One could use square 

neighborhoods as well. However, it is also possible to suppose that the neighborhoods, certain 

subsets of a given set of points, are specified in some way, even without the introduction of a 

metric. Such spaces are said to have a neighborhood topology. This notion is a generalization of a 

metric space. Felix Hausdorff (1868-1942), in his Grundzüge der Mengenlehre (Essentials of Set 

Theory, 1914), used the notion of a neighborhood (which Hilbert had already used in 1902 in a 

special axiomatic approach to Euclidean plane geometry) and built up a definitive theory of 

abstract spaces on this notion. 

And so we arrive at the end of the road at our goal of general or point set topology.  I thought I 

would close with the abstract definition for topology given by Wikipedia.  Hopefully the terms used in 

the definitions will be less opaque and the reason for the abstraction more understandable.  One of the 

great accomplishments of 20
th
 century mathematics was the discovery of how ideas and constructs in 

one area could be adapted and generalized to provide unusual insights in another area.  Functional 

Analysis based on point set topology is one of the supreme examples of this accomplishment. 



 

Point Set Topology 181226.doc 18 

Wikipedia Definitions 

(Wikipedia topology:) In mathematics, topology (from the Greek τόπος, place, and λόγος, 
study) is concerned with the properties of space that are preserved under continuous deformations, 

such as stretching, crumpling and bending, but not tearing or gluing. 

 (Wikipedia general topology:) In mathematics, general topology is the branch of topology 

that deals with the basic set-theoretic definitions and constructions used in topology. It is the 

foundation of most other branches of topology, including differential topology, geometric 

topology, and algebraic topology. Another name for general topology is point set topology. 

The fundamental concepts in point set topology are continuity, compactness, and 

connectedness: 

• Continuous functions, intuitively, take nearby points to nearby points. 

• Compact sets are those that can be covered by finitely many sets of arbitrarily small size. 

• Connected sets are sets that cannot be divided into two pieces that are far apart. 

The words ‘nearby’, ‘arbitrarily small’, and ‘far apart’ can all be made precise by using 

[neighborhoods].
2
 If we change the definition of ‘[neighborhood]’, we change what continuous 

functions, compact sets, and connected sets are. Each choice of definition for ‘[neighborhood]’ is 

called a topology. A set with a topology is called a topological space. 

(Wikipedia topological space:) In topology and related branches of mathematics, a 

topological space may be defined as a set of points, along with a set of neighbourhoods for each 

point, satisfying a set of axioms relating points and neighbourhoods. The definition of a 

topological space relies only upon set theory and is the most general notion of a mathematical 

space that allows for the definition of concepts such as continuity, connectedness, and 

convergence.  Other spaces, such as manifolds and metric spaces, are specializations of 

topological spaces with extra structures or constraints. Being so general, topological spaces are a 

central unifying notion and appear in virtually every branch of modern mathematics. The branch 

of mathematics that studies topological spaces in their own right is called point set topology or 

general topology. 
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