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Cutting Elliptical Pizza into Equal Slices 
(12 November 2017) 

Jim Stevenson 

Having immersed myself in studying Kepler’s discovery that the planetary orbits were ellipses 

([1]), I was immediately aware of how the British mathematician, Katie Steckles, justified her 

technique to cut an elliptical pizza into equal slices.  Here is her video of 14 March 2017: 

 

Figure 1    Cutting an oval pizza into equal area slices    

 (https://www.youtube.com/watch?v=K-VY2TsCano) 

And here are snapshots of her solution: 

 

 

Figure 2    Equal Slices (Circle) 

 

Figure 3    Equal Slices (Ellipse) 
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“Compressed Circle” 

Katie was employing the “compressed circle” definition of an ellipse that Kepler used before the 

advent of analytic geometry in the 17
th
 century.  Consider obtaining an ellipse with semimajor axis a 

and semiminor axis b.  Suppose a circle of radius a is drawn and that the distance of every point on 

the circle perpendicular to a fixed diameter is shrunk by a factor b/a.  Then the resulting curve will be 

an ellipse with semimajor axis a and semiminor axis b (See Figure 4). 

 

Figure 4    Parametric Definition of Ellipse 

Using modern analytic geometry, we can show this property easily.  From Figure 4 we see that 

the coordinates (x, y) on the ellipse are given by  

 x = a cos β  

 y = b sin β (1) 

where β is called the “eccentric anomaly” and describes a point Q moving around the circle with 

radius a.  The distance from Q perpendicularly down to the diameter of the circle is given by a sin β. 

So the ratio of y, the ordinate of the ellipse, to this distance is y / a sin β = b sin β / a sin β = b/a, 

which is the designated compression factor. 

Equal Areas 

We now consider “slices” of the pizza beginning with sectors S of the circle (Figure 5). 

 

Figure 5    Area Compression 
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The sector S consists of the triangle T1 and area A1 under the circle up to point Q.  The 

corresponding area under the ellipse S' is given by triangle T2 and area A2.  Since the altitude of 

triangle T2 is the altitude of T1 shrunk by b/a and they share the same base, we have  

T2 = b/a T1 

Similarly, since all the ordinates of the ellipse are shrunk versions of the ordinates of the circle, where 

the shrink factor is a constant (b/a), then the areas are also shrunk by that factor: 

A2 = b/a A1 

Therefore,  

S' = T2 + A2 = b/a T1 + b/a A1 = b/a (T1 + A1) = b/a S 

This means if two slices (sectors) of the circle have the same areas, then so do the compressed 

versions, since they are a constant multiple of the circle sectors.  Thus we get the equally-sliced result 

shown in Figure 6 and in Figure 3 of Katie’s video. 

 

Figure 6    Equal Slices for an Ellipse 

Affine Transformations 

In her video Katie makes the claim that the result of any affine transformation of the circular 

pizza cut into equal sectors will also be a set of equal area slices.  We need to explain what an affine 

transformation is (where the “compressed circle” is a special case) and then be more precise about the 

definition of area.  Unfortunately, I can’t see how to do this without involving calculus.  I will try to 

keep it as simple (intuitive) as possible. 

An affine transformation F sends points (x, y) to points (u, v) defined by the equations 

 u = a x + b y + e  

 v = c x + d y + f (2) 

where a, b, c, d, e, f are constants.  In matrix notation, equation (2) can be written 
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(See Figure 7.)  So an affine transformation F consists of a linear transformation T and a translation 

by (e, f).  In order not to have an area collapsed to a line, we assume the linear transformation T is 

non-singular, that is, its determinant, det T, is non-zero, where  

 bcad
dc

ba
T −==det  (4) 

 

Figure 7    Affine Transformation 

If the linear transformation T has determinant of absolute value 1, then the affine transformation 

F represents all rigid motions in a plane (rotation, translation, reflection).  Otherwise, T can shrink, 

expand, shear, skew, flip, and rotate the original figure.  Notice that the “compressed circle” 

transformation above is given by setting all coefficients equal to zero except a = 1 and d = 

semiminor/semimajor. 

Areas 

Now we wish to consider the effect of an affine transformation on the area of a region R.  Figure 

8 indicates how we can define the area inside a curved figure.  First we fill the area with a grid of 

squares where the k
th
 small square has an area ∆Ak = ∆xk ∆yk.  We then sum up all the squares inside 

the curve to get an approximation to the actual area: Pn = Σ ∆Ak = Σ ∆xk ∆yk (where the Greek S, Σ, 

 

Figure 8    Limit Definition of Area (Integration) 
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represents summing).  By taking smaller and smaller squares, we get a grid that approaches the actual 

area better and better.  The limiting value of these approximations is defined to be the area inside the 

curve and is denoted by the integral (∫) 

 Area of R = ∫
R dxdy.

1
 (5) 

Differentials 

The other side of calculus (besides integration) involves derivatives or rates of change.  I will be 

able to provide even less guidance here.  Basically the idea is to consider how one variable, say y, 

changes as another variable, say x, that it depends on, changes.  An average rate of change would be 

∆y/∆x where ∆y represents how much y changed when x changed by an amount ∆x.  Now we 

consider the limit as the change in x, ∆x, becomes shorter and shorter, that is, as ∆x → 0.  Since 

∆y → 0 also, we nominally have a limit of 0/0, which is nonsense. But in fact there are ample cases 

where a limit actually exists, and when that happens, we say this limit represents the instantaneous 

rate of change of y with respect to x, or the derivative of y with respect to x.  We denote this limit by 

dy/dx.  As a carry-over from the early history of calculus, we call dy and dx differentials and imagine 

them as infinitesimal entities (smallest, non-zero values – which again is nonsense). 

When several variables are involved, such as a variable u depending on variables x and y, we 

denote the derivatives of u as partial derivatives ∂u/∂x and ∂u/∂y, where ∂u/∂x means the 

instantaneous rate of change of u with respect to x when y is held constant and ∂u/∂y means the 

instantaneous rate of change of u with respect to y when x is held constant.  In terms of differentials 

we have (without further explanation) 

 du = ∂u/∂x dx + ∂u/∂y dy  

 dv = ∂v/∂x dx + ∂v/∂y dy (6) 

In matrix notation we can write all this as 
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DF is called the Jacobian matrix of the transformation F. 

Back to the areas.  Consider a transformation F (not necessarily affine, but still differentiable) that 

maps a region R onto a region F(R).  We would like to know how to represent the area of F(R) in 

terms of the area of R.  Using the integral representation of area given by equation (5), we have (a 

partial explanation is given in the Appendix p.6): 

                                                      
1
   

This is an extremely simplified presentation.  To make sure a limit could 

exist, the Greeks also considered grids that circumscribed the curved region 

and shrunk down as smaller and smaller squares were considered.  That is, 

if P'n represented a decreasing sequence of circumscribing grid areas with 

successively smaller squares, and Pn represented an increasing sequence of 

inscribed grid areas, then  

… Pk < Pk+1 < … < P'k+1 < P'k < … 

which trap a limiting value between them.  This value is defined to be the 

area (integral).  (This is still an oversimplification, but it suffices for now.)  
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 Area of F(R) = ∫∫ =
RRF

dxdyDFdudv )(det
)(

 (8) 

Now an affine transformation F is differentiable and its Jacobian matrix DF is just the linear 

transformation T.  Therefore the det DF = Det T = ad – bc is a constant (because a, b, c, and d are), 

which we denote by D0.  From equation (8) for an affine transformation F, we have 

 Area of F(R) = ∫∫∫ ==
RRRF

dxdyDdxdyDdudv 00

)(

 = D0 Area of R (9) 

The key is that det DF is a constant that can be pulled out from under the integral.  A non-singular 

affine transformation F maps non-overlapping regions R and S to non-overlapping regions F(R) and 

F(S).  If the two regions R and S have the same area, then so do their images F(R) and F(S): 

 Area of F(R)  =  D0 Area of R  =  D0 Area of S  =  Area of F(S)  

And so we have the generalization that any affine transformation of a circular pizza cut into equal 

slices will produce a distorted pizza still cut into equal slices. 

Appendix: Linear Transformation of Areas 

We are going to try to motivate the result in Equation (8). 

Equation (7) above shows that DF represents a linear 

transformation of differentials.  So we shall consider the behavior 

of a linear transformation T from the xy-plane �
2
 into the xy-

plane �
2
.  Points (x, y) in the plane can be represented by vectors 

from the origin, such as z = xi + yj where i is the unit basis vector 

of length 1 along the x-axis and j is the unit basis vector of length 

1 along the y-axis (Figure 9).  (We show vectors in boldface and 

scalars (real numbers) in non-boldface font.) 

Linear Transformation.  Recall that a map T: �
2
 → �

2
 is a 

linear transformation if for every vector u and v and scalar a and b, 

 T(au + bv) = a T(u) + b T(v) (10) 

Vector (Cross) Product.  Recall that the vector or cross product of two vectors u and v, u x v, 

has the following properties. 

1. For any two vectors u and v,  u x v is a vector 

2. For any scalar a,  a (u x v) = (au) x v = u x (av) 

3. For any three vectors u, v, and w, 

 u x (v + w) = u x v + u x w  and  (u + v) x w = u x w + v x w 

4. For any two vectors u and v, u x v = – v x u 

Property 4 implies that 0 = u x v + v x u, which in turn implies 0 = 2 u x u, or u x u = 0.  If 

u = ai + bj and v = ci + dj, then 

 u x v = (ad – bc) i x j = 
dc

ba
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One final property, which we will not prove here, is that the magnitude of the vector u x v  is 

given by 

 

Figure 9    Vector Representation 
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 |u x v| = |u| |v| sin θ (12) 

where |u| and |v| are the magnitudes (lengths), respectively, of u and v and θ is the angle between 

them.  As we can see in Figure 10, this implies that the magnitude of the cross product represents the 

area of the parallelogram spanned by the two vectors. 

 

Figure 10    Magnitude of Cross Product is Area 

We are now ready to show the behavior of a linear transformation T of �
2
 with respect to areas.  

All we need to compute are the values of T for basis vectors i and j, since by linearity we can 

determine how it maps any other vectors.  Suppose we have 

 T(i) = ai + cj 

 T(j) = bi + dj 

for some scalars a, b, c, and d.  The matrix associated with T is then defined to be 

 mat T = 








dc

ba
 

(notice the transpose of b and c).  From equation (11) we have 

 T(i) x T(j) = det T i x j  

Now let us consider a small rectangular region R with area ∆A = ∆x ∆y (Figure 11).  Under the 

linear transformation T, R is mapped to the parallelogram region T(R) spanned by the vectors ∆∆∆∆u and 

∆∆∆∆v where 

    ∆∆∆∆u = T(∆xi) = T(i) ∆x 

    ∆∆∆∆v = T(∆yj) = T(j) ∆y 

 

Figure 11    Linear Transformation of Areas in the Plane 
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Then the area of T(R) is given as the magnitude of 

    ∆∆∆∆u x ∆∆∆∆v = T(i) x T(j) ∆x ∆y = det T ∆x ∆y i x j = det T Area of R  i x j 

so that  

 Area of T(R) = det T Area of R 

Equation (8) above (p.6) basically derives from this property where the incremental areas pass to 

the limit represented by the differentials.   
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