## **The Umbrella Problem**

5 September 2024, rev 4 October 2024

Jim Stevenson



This is a rather mind-boggling problem from the 1947 *Eureka* magazine ([1]).

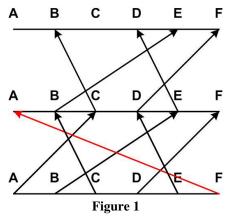
Six men, A, B, C, D, E, F, of negligible honesty, met on a perfectly rough day, each carrying a light inextensible umbrella. Each man brought his own umbrella, and took away—let us say "borrowed"—another's. The umbrella borrowed by A belonged to the borrower of B's umbrella. The owner of the umbrella borrowed by C borrowed the umbrella belonging to the borrower of D's umbrella. If the borrower of E's umbrella was not the owner of that borrowed by F, who borrowed A's umbrella?

## **My Solution**

My solution is a clumsy trial-and-error approach, which happened to luck out on the first try. I laid out the choices on lines as shown in Figure 1. I joined one letter with another if the first borrowed the umbrella of the second.

Using the first sentence below, I arbitrarily chose C to be the borrower of B's umbrella and inserted its letter in red for the borrower. The second sentence meant that B had to be the owner of the umbrella borrowed by C. I arbitrarily assigned E as the borrower of D's umbrella. That meant that B was not the owner of the umbrella borrowed by F, since C had borrowed B's umbrella.

From the problem statement (with red letters added as described above):


- 1. The umbrella borrowed by A belonged to the borrower C of B's umbrella.
- 2. The owner B of the umbrella borrowed by C borrowed the umbrella belonging to the borrower E of D's umbrella.
- 3. The borrower **B** of E's umbrella was not the owner of that borrowed by F.
- 4. Then who borrowed A's umbrella?

Therefore, everything is consistent up to this point, so that leaves A as the owner of the umbrella borrowed by F.

I did not consider other possible solutions.

## Eureka Solution

The Eureka solution is very elegant and finds all the solutions to the problem.



The simple fact is relevant, that any permutation p of the numbers 1, 2, ..., n is expressible as the product of cycles,

$$p = (\alpha, \beta, \gamma, ..., \zeta) (\eta, \theta, ...) (..., \omega)$$

Here,  $\alpha$ , ...,  $\omega$  represent the numbers from 1 to *n* in some arrangement, each number appearing only once. It is implied that *p* sends  $\alpha$  into  $\beta$ ,  $\beta$  into  $\gamma$ , ...,  $\zeta$  into  $\alpha$ , and  $\eta$  into  $\theta$ , and so forth. The number of terms enclosed between a pair of brackets is the order of the corresponding cycle. Cycles of order 1 may of course be omitted.

In the umbrella problem, a permutation p of A, B, C, D, E, F is defined by the stipulation that the umbrella belonging to x was borrowed by px, where x runs through the letters A, ..., F. The data are now:

(i) p contains no cycle of order 1; (ii)  $A = p^2 B$ ; (iii)  $C = p^3 D$ ; (iv)  $p^2 E \neq F$ .

It follows from (i) that *p* must be of one of four forms [essentially all partitions of A, B, C, D, E, F, each involving more than one letter ],

either (\*, \*) (\*, \*) (\*, \*) [ $\Rightarrow p^2 = 1$  (identity permutation)] or (\*, \*) (\*, \*, \*, \*)or (\*, \*, \*) (\*, \*, \*)or (\*, \*, \*, \*, \*, \*).

The first form is incompatible with (ii), which reduces the alternatives to

$$(*, *)$$
 (B, \*, A, \*) and (B, \*, A) (\*, \*, \*) and (B, \*, A, \*, \*, \*).

Using (iii) similarly, we obtain the alternatives

(C, D) (B, \*, A, \*) and (B, D, A, \*, C, \*) and (B, C, A, \*, D, \*).

Finally, (iv) shows that p must be either (B, D, A, F, C, E) or (B, C, A, F, D, E). Thus, pA = F; the borrower of A's umbrella was F.

## References

[1] "The Umbrella Problem", *Eureka*, The Journal of the Archimedeans, The Cambridge University Mathematical Society: Junior Branch of the Mathematical Association, No. 9, April 1947. p.22 (https://www.archim.org.uk/eureka/archive/Eureka-9.pdf)

© 2024 James Stevenson