Horses to Qi

22 June 2024

Jim Stevenson

were already adept at using. ${ }^{1}$

This is a fairly challenging problem from the c .100 AD Chinese mathematical work, Jiǔ zhāng suàn shù (The Nine Chapters on the Mathematical Art) found at the MAA Convergence website ([1]).

Now a good horse and an inferior horse set out from Chang' an to Qi. Qi is $3000 l i$ from Chang'an. The good horse travels $193 l i$ on the first day and daily increases by 13 li ; the inferior horse travels $97 l i$ on the first day and daily decreases by $1 / 2 l i$. The good horse reaches Qi first and turns back to meet the inferior horse. Tell: how many days until they meet and how far has each traveled?

The solution involves common fractions, which the Chinese

Solution

Figure 1 shows the space-time diagram for the traveling horses. Let S_{t} be the distance the slow horse traveled in time t and F_{t} the distance the fast horse traveled in time t. Let T be the time they meet. Then T is made up of n integral days and x fraction of a day.

Now we have

$$
\begin{equation*}
\mathrm{S}_{\mathrm{T}}+\left(\mathrm{F}_{\mathrm{T}}-3000\right)=3000 \tag{1}
\end{equation*}
$$

or $\quad \mathrm{S}_{\mathrm{T}}+\mathrm{F}_{\mathrm{T}}=6000$

Whole Day Computations

Let's consider first the distances traveled in
 whole days n. Then, for example, after 4 days the slow horse will have traveled

$$
\mathrm{S}_{4}=97+(97-1 / 2)+(97-1 / 2-1 / 2)+(97-1 / 2-1 / 2-1 / 2)=4 \cdot 97-1 / 2(1+2+3)
$$

or after n days the slow horse will have traveled

$$
\begin{equation*}
\mathrm{S}_{n}=97 n-1 / 2(1+2+3+\ldots+(n-1))=97 n-1 / 2(n(n-1) / 2) \tag{2}
\end{equation*}
$$

Similarly, for the fast horse

$$
\begin{equation*}
\mathrm{F}_{n}=193 n+13(1+2+3+\ldots+(n-1))=193 n+13(n(n-1) / 2) \tag{3}
\end{equation*}
$$

Therefore, from equation (1) we are looking for the largest whole number n such that

$$
\mathrm{S}_{n}+\mathrm{F}_{n} \leq 6000 \text { and } \mathrm{S}_{n+1}+\mathrm{F}_{n+1}>6000
$$

That is,

[^0]$$
\mathrm{S}_{n}+\mathrm{F}_{n}=290 n+25 / 4\left(n^{2}-n\right)=25 / 4 n^{2}+1135 / 4 n \leq 6000
$$

Let's consider this expression depending on a continuous time t in order to find the value t such that we have equality, that is,

$$
\begin{gather*}
\mathrm{S}_{t}+\mathrm{F}_{t}=25 / 4 t^{2}+1135 / 4 t=6000 \tag{4}\\
25 t^{2}+1135 t-24000=0 \\
5 t^{2}+227 t-4800=0
\end{gather*}
$$

or
or
Then

$$
t=\frac{-227 \pm \sqrt{227^{2}+20 \cdot 4800}}{10}=\frac{-227+384.0950403}{10}=15.70950403
$$

So the largest whole number is 15 , which means the horsemen traveled 15 days plus a fraction of a day.

Fraction of Day Computations

So each horseman traveled for some fraction x of the $16^{\text {th }}$ day when they meet. We assume each horseman is riding at a constant speed for the whole day, though it is a different speed from the previous days. Then

$$
\mathrm{S}_{16}-\mathrm{S}_{15}=(\text { constant speed })(1 \text { day }) \Rightarrow\left(\mathrm{S}_{16}-\mathrm{S}_{15}\right) x=(\text { constant speed })(x \text { fraction of day })
$$

and $\quad \mathrm{F}_{16}-\mathrm{F}_{15}=($ constant speed $)(1$ day $) \Rightarrow\left(\mathrm{F}_{16}-\mathrm{F}_{15}\right) x=($ constant speed $)(x$ fraction of day $)$
Thus equation (1) becomes for $\mathrm{T}=15+x$,

$$
\begin{equation*}
\mathrm{S}_{15}+\mathrm{F}_{15}+x\left(\left(\mathrm{~S}_{16}-\mathrm{S}_{15}\right)+\left(\mathrm{F}_{16}-\mathrm{F}_{15}\right)\right)=6000 \tag{5}
\end{equation*}
$$

Now from equation (2)

$$
\mathrm{S}_{15}=(97-14 / 4) \cdot 15=1402.5 \mathrm{li}
$$

and from equation (3)

$$
\mathrm{F}_{15}=(193+13 \cdot 14 / 2) \cdot 15=4260 \mathrm{li}
$$

From equation (2) we get

$$
\mathrm{S}_{n+1}-\mathrm{S}_{n}=97-1 / 2 n \Rightarrow \mathrm{~S}_{16}-\mathrm{S}_{15}=97-1 / 2 \cdot 15=89.5 l i
$$

and from equation (3) we get

$$
\mathrm{F}_{n+1}-\mathrm{F}_{n}=193+13 n \Rightarrow \mathrm{~F}_{16}-\mathrm{F}_{15}=193+13 \cdot 15=388 l i
$$

So equation (5) becomes

$$
1402.5+4260+x(89.5+388)=6000
$$

Therefore

$$
x=337.5 / 477.5=135 / 191
$$

And so the horsemen traveled $\mathrm{T}=15{ }^{135} / 191$ days. The good fast horse traveled

$$
\mathrm{F}_{\mathrm{T}}=\mathrm{F}_{15}+x\left(\mathrm{~F}_{16}-\mathrm{F}_{15}\right)=4260+\left({ }^{135} / 191\right) 388=45344^{46} / 191
$$

and the inferior slow horse traveled

$$
\mathrm{S}_{\mathrm{T}}=\mathrm{S}_{15}+x\left(\mathrm{~S}_{16}-\mathrm{S}_{15}\right)=1402.5+\left({ }^{135} / 191\right) 89.5=1465{ }^{145} / 191 / i
$$

Comment．Note that the answer for the time $15{ }^{135} / 191=15.70681$ ，which is the solution from equation（5）and the answer given in the Nine Chapters，does not equal the time $t=15.70950$ ， which is the solution to the quadratic equation （4），though they are close．Initially，I thought they would be the same．

But a closer look at the nature of the two equations explains the difference（Figure 2）． Equation（4）is a smooth parabolic curve， whereas equation（5）represents a linear interpolation along a curve made up of straight line segments．And since the parabolic curve is

Figure 2 concave up，the time $15+x$ reached by the line segment at $6000 l i$ is less than the time t when the parabola reaches 6000 li ．One might even argue that the parabolic shape is closer to a physical continuous change in speed of the horses than the broken line curve，but that is not how the original problem was interpreted apparently．

References

［1］＂Horses to Qi，＂Convergence，Mathematical Association of America，November 2006．From Jiǔ zhāng suàn shù（The Nine Chapters on the Mathematical Art）c． 100 AD（［2］p．1）
（New link：https：／／old．maa．org／press／periodicals／convergence／horses－to－qi）．
［2］Cullen，Christopher，The Suàn shù shū 笄數書，＇Writings on reckoning＇：A translation of a Chinese mathematical collection of the second century BC，with explanatory commentary， Needham Research Institute Working Papers：1，Needham Research Institute，Cambridge，UK， 2004．（https：／／www．nri．org．uk／suanshushu．html）

[^0]: 1 See my post on "Making Arrows" (https://josmfs.net/2024/06/22/making-arrows/) where I delve into the history of common fractions in Chinese mathematics, as well as a brief mention of Indian fractions.

