Pythagorean Theorem Converse

20 March 2024

Jim Stevenson

One of the joys of getting old is that you forget things. So one of the things I recall is that the converse of the Pythagorean Theorem is true, that is, if a triangle with short sides a and b and long side c is such that

$$
a^{2}+b^{2}=c^{2},
$$

then the triangle must be a right triangle with the angle between sides a and b being 90°. But I didn't recall how to prove it. So I thought I would see if I could do it without looking up any sources.

Solution

I made some attempts at proving the converse using plane geometry, but couldn't see an easy way to do it. Even though there are over a hundred proofs of the original Pythagorean Theorem, they are not that easy to think of without knowing them first.

So I tried analytic geometry with better results.

Figure 1

Figure 2

Figure 1 shows the case when the angle in question is obtuse and Figure 2 when the angle is acute. A perpendicular of length y is dropped from the end of line c and lands a (signed) distance x from the end of line a. So besides the given relationship $a^{2}+b^{2}=c^{2}$, we have from the original Pythagorean Theorem

$$
\begin{equation*}
x^{2}+y^{2}=b^{2} \quad \text { and } \quad(a+x)^{2}+y^{2}=c^{2} \tag{*}
\end{equation*}
$$

where x may be positive or negative.
Therefore

$$
a^{2}+2 a x+x^{2}+y^{2}=c^{2}=a^{2}+b^{2}
$$

or

$$
2 a x+b^{2}=b^{2}
$$

$$
2 a x=0 \Rightarrow x=0 \text { and } y=b .
$$

And that means a is perpendicular to b and we have a right angle.
Comment 1. A slightly different way of looking at the situation is to just begin with equations (*) and not assume $a^{2}+b^{2}=c^{2}$. So
or

$$
a^{2}+2 a x+b^{2}=c^{2}
$$

And so

$$
a^{2}+2 a x+x^{2}+y^{2}=c^{2}
$$

$$
\begin{aligned}
& c^{2}-\left(a^{2}+b^{2}\right)=2 a x>0 \text { if } x>0 \text { (obtuse) } \\
& c^{2}-\left(a^{2}+b^{2}\right)=2 a x<0 \text { if } x<0 \text { (acute) }
\end{aligned}
$$

That is, if the angle is not a right angle, then $a^{2}+b^{2} \neq c^{2}$, which is the other way of proving the converse.

Comment 2. This is sort of subliminal but I was following Polya's principle of reducing the problem to one I already knew how to solve, namely, the original Pythagorean Theorem. Then I just followed the computations, hoping something nice would happen, and it did. A finished solution always gives the impression you knew everything beforehand, but that is not the case, which is why solving problems is so frustrating and rewarding.
© 2024 James Stevenson

