Logical Dead End

16 February 2024

Jim Stevenson

One is reduced to hysterical laughter to try to maintain a modicum of sanity.

Our Senate at work: Republican Mitch McConnell said (Dec 6) "Legislation that doesn't include policy changes to secure our borders will not pass the Senate."¹ Republican Trump said (Feb 3) the Senate should not pass legislation that includes border security.² Let P be the statement "Senate legislation should include border

security." and let Q be the statement "Senate should pass legislation." Then we have the Republicans saying

$$(\mathbf{\sim} \mathbf{P} \Rrightarrow \mathbf{\sim} \mathbf{Q}) \land (\mathbf{P} \Rrightarrow \mathbf{\sim} \mathbf{Q})$$

Show that this is equivalent to $\sim Q$, that is, "The Senate should not pass legislation."—basically stop working.

It looks like the Republicans in the House are doing the same thing.

¹ https://www.pbs.org/newshour/politics/senate-republicans-block-ukraine-and-israel-aid-as-they-demandborder-policy-changes

² https://www.cnn.com/2024/02/10/politics/trump-foreign-aid-loan-senate-package/index.html

 $[\]label{eq:https://www.politico.com/dims4/default/78a7fc8/2147483647/resize/1160x\%3E/quality/90/?url=https\%3A\%2F\%2Fstatic.politico.com\%2F61\%2Faa\%2F0a183944434ab65f7bb71082b684\%2F2-dave-whamond-cagle-com.jpg$

Solution

We want to show the following is true:

$$(\sim P \Rightarrow \sim Q) \land (P \Rightarrow \sim Q) \Leftrightarrow \sim Q$$

Via truth tables

((~	Р	⇒	1	Q)	٨	(P	⇒	1	Q))	¢	1	Q
F	Т	Τ	F	Т	F	Т	F	F	Т	Т	F	Т
F	Т	Τ	Т	F	Т	Т	Τ	Т	F	Т	Т	F
Τ	F	F	F	Т	F	F	Τ	F	Т	Т	F	Т
Τ	F	Τ	Т	F	Т	F	Τ	Т	F	Т	Т	F
(2)	(1)	(3)	(2)	(1)	(4)	(1)	(3)	(2)	(1)	(5)	(4)	(1)

Via propositional properties

$$(\sim P \Rightarrow \sim Q) \land (P \Rightarrow \sim Q) \Leftrightarrow (P \lor \sim Q) \land (\sim P \lor \sim Q)$$
$$\Leftrightarrow (P \land \sim P) \lor \sim Q$$
$$\Leftrightarrow \sim Q$$

(since $\mathbf{A} \Rightarrow \mathbf{B} \Leftrightarrow \mathbf{\neg} \mathbf{A} \lor \mathbf{B}$)

(propositional distributive law)

 $(\mathbf{P} \land \mathbf{\sim} \mathbf{P} \text{ is a contradiction and always false})$

© 2024 James Stevenson