Special Log Sum

11 January 2024
Jim Stevenson

Here is a fairly computationally challenging 1994 AIME problem ([1]).

Find the positive integer n for which

$$
\left\lfloor\log _{2} 1\right\rfloor+\left\lfloor\log _{2} 2\right\rfloor+\left\lfloor\log _{2} 3\right\rfloor+\ldots+\left\lfloor\log _{2} n\right\rfloor=1994
$$

where for real $x,\lfloor x\rfloor$ is the greatest integer $\leq x$.
There is some fussy consideration of indices.

Solution

Let $f(n)=\left\lfloor\log _{2} n\right\rfloor$, so $f\left(2^{k}\right)=k$, and $f(n)=k$ for $2^{k} \leq n<2^{k+1}$. And let

$$
S(n)=f(1)+f(2)+\ldots+f(n) .
$$

Consider some initial values and the corresponding behavior:

n	1	2	3	2^{2}	5	6	7	2^{3}	9	10	11	12	13	14	15	2^{4}	\ldots	$2^{k}-1$	2^{k}	\ldots
$f(n)$	0	1	1	2	2	2	2	3	3	3	3	3	3	3	3	4	...	$k-1$	k	\ldots
$S(\mathrm{n})$	0		1												$2^{3} \cdot 3$	+4	...	$+2^{k-1}(k-1)$	+ k	\ldots

Then
where

$$
\begin{gathered}
S(n)=T(k)+\left(n-2^{k}+1\right) k \text { for } 2^{k} \leq n<2^{k+1}, \\
T(k)=\sum_{m=1}^{k-1} m 2^{m}
\end{gathered}
$$

We want to find n such that $S(n)=1994$, so we want to find the largest k such that $T(k) \leq 1994$. We will consider some alternative approaches, but a brute-force computation gives:

\boldsymbol{k}	2	3	4	5	6	7	8	9
$(\boldsymbol{k} \mathbf{- 1}) \boldsymbol{2}^{\boldsymbol{k} \boldsymbol{- 1}}$	$1 \cdot 2=2$	$2 \cdot 4=8$	$3 \cdot 8=24$	$4 \cdot 16=64$	$5 \cdot 32=160$	$6 \cdot 64=384$	$7 \cdot 128=896$	$8 \cdot 256=2048$
$\boldsymbol{T}(\boldsymbol{k})$	2	10	34	98	258	642	1538	3586

So the largest k is 8 . So

$$
1994-\mathrm{T}(8)=1994-1538=456=\left(n-2^{8}+1\right) 8=(n-255) 8
$$

and so

$$
n=255+57=312
$$

(This is essentially the same solution as given by AIME, only with a bit more detail.)
Notice that this problem would work for the years 2002, 2010, 2018, and 2026, that is, multiples of 8 beyond 1994. So $312+4=316$ would give the value of n for 2026 .

Alternative Calculation for $T(k)=\sum_{m=1}^{k-1} m 2^{m}$

This sequence looks familiar. We encountered its infinite form in the "Amazing Root Problem" ${ }^{1}$ and "Another Challenging Sum". ${ }^{2}$ Apparently it is called the arithmetico-geometric series. Wikipedia derives an expression for its partial sums, ${ }^{3}$ but I thought it would be interesting to try to apply my standard geometric series approach. It does involve a bit of computation that actually makes the brute-force method a bit faster.

As before, let $G_{k}(x)$ be the k th partial sum of the geometric series

$$
G_{k}(x)=1+x+x^{2}+x^{3}+\ldots+x^{k}=\frac{1-x^{k+1}}{1-x}
$$

Then

$$
G_{k}{ }^{\prime}(x)=1+2 x+3 x^{2}+4 x^{3}+\ldots+k x^{k-1}=\frac{(x-1)(k+1) x^{k}+\left(1-x^{k+1}\right)}{(1-x)^{2}}
$$

So

$$
T(k)=2 G_{k-1}{ }^{\prime}(2)=2+(k-2) 2^{k}
$$

and

$$
T(8)=2+6 \cdot 2^{8}=2+1536=1538
$$

as we got before.

References

[1] "Problem 4" 1994 AIME Problems (https://artofproblemsolving.com/wiki/index.php/1994_AIME_Problems)
© 2024 James Stevenson

[^0]
[^0]: ${ }^{1}$ https://josmfs.net/2023/12/30/amazing-root-problem/
 https://josmfs.net/2023/12/09/another-challenging-sum/
 https://en.wikipedia.org/wiki/Arithmetico-geometric_sequence

