Special Log Sum

11 January 2024

Jim Stevenson

Here is a fairly computationally challenging 1994 AIME problem ([1]).

Find the positive integer *n* for which

 $\lfloor \log_2 1 \rfloor + \lfloor \log_2 2 \rfloor + \lfloor \log_2 3 \rfloor + \ldots + \lfloor \log_2 n \rfloor = 1994.$

where for real x, $\lfloor x \rfloor$ is the greatest integer $\leq x$.

There is some fussy consideration of indices.

Solution

Let $f(n) = \lfloor \log_2 n \rfloor$, so $f(2^k) = k$, and f(n) = k for $2^k \le n < 2^{k+1}$. And let

$$S(n) = f(1) + f(2) + \dots + f(n).$$

Consider some initial values and the corresponding behavior:

n	1	2	3	2^2	5	6	7	2^{3}	9	10	11	12	13	14	15	2 ⁴	 2^{k} -1	2^k	
f(n)	0	1	1	2	2	2	2	3	3	3	3	3	3	3	3	4	 k -1	k	
S(n)	0	+ 2	2.1	2.1 + $2^2.2$		$+2^{3}\cdot3$						+4	 $+ 2^{k-1}(k-1)$	+k					

Then

$$S(n) = T(k) + (n - 2^{k} + 1)k$$
 for $2^{k} \le n < 2^{k+1}$.

where

and so

$$T(k) = \sum_{m=1}^{k-1} m 2^m$$

We want to find *n* such that S(n) = 1994, so we want to find the largest *k* such that $T(k) \le 1994$. We will consider some alternative approaches, but a brute-force computation gives:

k	2	3	4	5	6	7	8	9
$(k-1)2^{k-1}$	$1 \cdot 2 = 2$	$2 \cdot 4 = 8$	3.8 = 24	4.16 = 64	5.32 = 160	6.64 = 384	7.128 = 896	8·256 = 2048
T(k)	2	10	34	98	258	642	1538	3586

So the largest *k* is 8. So

 $1994 - T(8) = 1994 - 1538 = 456 = (n - 2^8 + 1)8 = (n - 255)8$ n = 255 + 57 = 312

(This is essentially the same solution as given by AIME, only with a bit more detail.)

Notice that this problem would work for the years 2002, 2010, 2018, and 2026, that is, multiples of 8 beyond 1994. So 312 + 4 = 316 would give the value of *n* for 2026.

Alternative Calculation for $T(k) = \sum_{m=1}^{k-1} m2^m$

This sequence looks familiar. We encountered its infinite form in the "Amazing Root Problem"¹ and "Another Challenging Sum".² Apparently it is called the *arithmetico-geometric series*. Wikipedia derives an expression for its partial sums,³ but I thought it would be interesting to try to apply my standard geometric series approach. It does involve a bit of computation that actually makes the brute-force method a bit faster.

As before, let $G_k(x)$ be the *k*th partial sum of the geometric series

$$G_k(x) = 1 + x + x^2 + x^3 + \dots + x^k = \frac{1 - x^{k+1}}{1 - x}$$

Then

$$G_{k}'(x) = 1 + 2x + 3x^{2} + 4x^{3} + \dots + kx^{k-1} = \frac{(x-1)(k+1)x^{k} + (1-x^{k+1})}{(1-x)^{2}}$$

So

$$T(k) = 2G_{k-1}'(2) = 2 + (k-2)2^k$$

and

$$T(8) = 2 + 6 \cdot 2^8 = 2 + 1536 = 1538$$

as we got before.

References

[1] "Problem 4" 1994 AIME Problems (https://artofproblemsolving.com/wiki/index.php/1994_AIME_Problems)

© 2024 James Stevenson

¹ https://josmfs.net/2023/12/30/amazing-root-problem/

² https://josmfs.net/2023/12/09/another-challenging-sum/

³ https://en.wikipedia.org/wiki/Arithmetico-geometric_sequence