Distance to Flag Problem

20 December 2023

Jim Stevenson

Solution 1

As shown in Figure 1, let x be the distance from flag A to flag D and d the distance from flag D to flag C . We are given that

$$
x+d=160 \text { yards. }
$$

Since the triangle is a right triangle, we have by the Pythagorean Theorem that

$$
d^{2}=(x+40)^{2}+120^{2}
$$

Now substituting the first relationship into the second equation yields

$$
d^{2}=(160-d+40)^{2}+120^{2}=(200-d)^{2}+120^{2}=200^{2}-400 \mathrm{~d}+d^{2}+120^{2}
$$

So canceling the d^{2} and simplifying, we get
or

$$
40 \cdot 10 d=(5 \cdot 40)^{2}+(3 \cdot 40)^{2}=34 \cdot 40^{2}
$$

Therefore

$$
d=136 \text {. }
$$

Figure 1
(O'Shea's solution is virtually the same.)

Solution 2

Seeing that the puzzle involves two sums that are the same, namely 160 yards, immediately suggests that an ellipse might be lurking somewhere. Figure 2 shows that there is. Flags at A and C are positioned at the foci of the ellipse, which means the center is half the distance between these points, or (via the Pythagorean Theorem) the distance from focus to center $c=40 \sqrt{ } 10 / 2=20 \sqrt{ } 10$. The constant distance 160 represents twice the length of the semi-major axis a, so that $a=160 / 2=80$.

Now we use the parametric equation for the ellipse with origin at one focus as given in the post "Kepler's Laws and Newton's Laws", ${ }^{1}$ namely,

$$
r=\frac{p}{1+e \cos \theta}
$$

where eccentricity

$$
e=c / a=\sqrt{ } 10 / 4
$$

and

$$
p=a\left(1-e^{2}\right)=80 \cdot 6 / 16=30 .
$$

Therefore,

$$
r=\frac{30}{1+\frac{\sqrt{10}}{4} \cos \theta}
$$

Figure 2

Figure 3

Let $\theta=\theta_{0}$ when r is horizontal (and equals 40) (Figure 3). Then the desired distance x is when r has rotated $\theta_{0}-\pi$. So

$$
x=\frac{30}{1+\frac{\sqrt{10}}{4} \cos \left(\theta_{0}-\pi\right)}
$$

But $\cos \left(\theta_{0}-\pi\right)=\cos \left(\pi-\theta_{0}\right)=40 / 40 \sqrt{ } 10=1 / \sqrt{ } 10$. Therefore,

$$
x=\frac{30}{1+\frac{\sqrt{10}}{4} \frac{1}{\sqrt{10}}}=24
$$

which agrees with our previous answer. Cool, if a bit over-kill.

References

[1] O'Shea, Owen, Mathematical Brainteasers with Surprising Solutions, Prometheus Books, Guilford, Connecticut, 2020
© 2023 James Stevenson

[^0]
[^0]: 1 https://josmfs.net/2018/12/29/keplers-laws-and-newtons-laws/

