Another Challenging Sum

8 December 2023

Jim Stevenson

This is yet another series offered by Presh Talwalkar. ${ }^{1}$
What is the value of the following sum?

$$
S=\frac{1^{2}}{2^{1}}+\frac{2^{2}}{2^{2}}+\frac{3^{2}}{2^{3}}+\frac{4^{2}}{2^{4}}+\cdots+\frac{n^{2}}{2^{n}}+\cdots
$$

Talwalkar gives hints for three possible approaches to the solution.

My Solution

I proceed as in previous cases, ${ }^{2}$ namely, via power series. Let

$$
H(x)=\sum_{n=1}^{\infty} n^{2} x^{n}
$$

Then $H(1 / 2)=S$. Now $H(x)$ suggests differentiation of the geometric power series (where we can differentiate converging power series term-by-term just as if they were polynomials. This is why Newton used them so much in his work.). Let $F(x)$ be the geometric series

$$
F(x)=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x} \quad|x|<1
$$

Then

$$
F^{\prime}(x)=\sum_{n=1}^{\infty} n x^{n-1}=1+2 x+3 x^{2}+4 x^{3}+\ldots=\frac{1}{(1-x)^{2}}
$$

and

$$
F^{\prime \prime}(x)=\frac{1}{(1-x)^{3}}
$$

Let

$$
G(x)=x F^{\prime}(x)=\sum_{n=1}^{\infty} n x^{n}=x+2 x^{2}+3 x^{3}+4 x^{4}+\ldots=\frac{x}{(1-x)^{2}}
$$

Then

$$
G^{\prime}(x)=x F^{\prime \prime}(x)+F^{\prime}(x)=\sum_{n=1}^{\infty} n^{2} x^{n-1}=1+4 x+9 x^{2}+16 x^{3}+\ldots=\frac{x}{(1-x)^{3}}+\frac{1}{(1-x)^{2}}
$$

and
so

$$
H(x)=x G^{\prime}(x)=\sum_{n=1}^{\infty} n^{2} x^{n}=x^{2} F^{\prime \prime}(x)+x F^{\prime}(x)=\frac{x^{2}}{(1-x)^{3}}+\frac{x}{(1-x)^{2}}=\frac{x(1+x)}{(1-x)^{3}}
$$

$$
S=H\left(\frac{1}{2}\right)=\frac{\frac{1}{2} \cdot \frac{3}{2}}{\left(\frac{1}{2}\right)^{3}}=6
$$

[^0]
Talwalkar Solutions

First we will check for convergence.

$$
\begin{aligned}
& S_{n}=\frac{1^{2}}{2^{1}}+\frac{2^{2}}{2^{2}}+\frac{3^{2}}{2^{3}}+\frac{4^{2}}{2^{4}}+\cdots+\frac{n^{2}}{2^{n}} \\
& \begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)^{2}}{2^{n+1}}}{\frac{n^{2}}{2^{n}}}\right|=\lim _{n \rightarrow \infty}\left|\frac{1}{2} \cdot\left(\frac{n+1}{n}\right)^{2}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{1}{2} \cdot\left(1+\frac{1}{n}\right)^{2}\right|=\lim _{n \rightarrow \infty}\left|\frac{1}{2} \cdot 1^{2}\right|=\frac{1}{2}<1
\end{aligned}
\end{aligned}
$$

Now let's solve it in a few ways.

Method 1: pattern

$$
\begin{aligned}
S & =1^{2} / 2^{1}+2^{2} / 2^{2}+3^{2} / 2^{3}+\ldots+n^{2} / 2^{n}+\ldots \\
S & =1 / 2+4 / 4+9 / 8+16 / 16+25 / 32+\ldots \\
2 S & =1+4 / 2+9 / 4+16 / 8+25 / 16+\ldots \\
2 S-S=S & =1+3 / 2+5 / 4+7 / 8+9 / 16+\ldots \\
S-1 & =3 / 2+5 / 4+7 / 8+9 / 16+\ldots \\
2(S-1) & =3+5 / 2+7 / 4+9 / 8+\ldots \\
2(S-1)-S & =2+2 / 2+2 / 4+2 / 8+\ldots
\end{aligned}
$$

Simplifying both sides we get:

So we have:

$$
\begin{aligned}
& S-2=2+1+1 / 2+1 / 4+\ldots \\
& S-2=2+1 /(1-1 / 2) \\
& S-2=2+2
\end{aligned}
$$

$$
S=6
$$

Method 2: sequences

$$
\begin{aligned}
& S_{n}=\frac{1^{2}}{2^{1}}+\frac{2^{2}}{2^{2}}+\frac{3^{2}}{2^{3}}+\frac{4^{2}}{2^{4}}+\cdots+\frac{n^{2}}{2^{n}} \\
& \begin{aligned}
S & =\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}
\end{aligned}=\sum_{n=0}^{\infty} \frac{(n+1)^{2}}{2^{n+1}}=\sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}} \\
& S=2 S-S=2 \sum_{n=0}^{\infty} \frac{(n+1)^{2}}{2^{n+1}}-\sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}} \\
& \\
& =\sum_{n=0}^{\infty} \frac{n^{2}+2 n+1-n^{2}}{2^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \frac{2 n+1}{2^{n}} \\
& =\sum_{n=0}^{\infty} \frac{2 n}{2^{n}}+\frac{1}{2^{n}} \\
& =2 \sum_{n=0}^{\infty} \frac{n}{2^{n}}+\sum_{n=0}^{\infty} \frac{1}{2^{n}} \\
& =2 \times 2+2=6
\end{aligned}
$$

The sequence $n / 2^{n}$ is an arithmetico-geometric series ${ }^{3}$ and the series $1 / 2^{n}$ is a standard geometric series.
(Wikipedia) The summation of this infinite sequence is known as an arithmetico-geometric series, and its most basic form has been called Gabriel's staircase:

$$
\sum_{k=1}^{\infty} k r^{k}=\frac{r}{(1-r)^{2}}, \quad \text { for } 0<r<1
$$

I prefer derivations to memorization of formulas, so I would derive this result directly. In fact, note that this is the same as my $G(x)$ above, that is, $G(r)=r F^{\prime}(r)=r /(1-r)^{2}$. So $G(1 / 2)=2$.
Method 3: generating function
This is the same as my solution.

References

Answers by Trevor, Aryan Arora, Alexey Godin
https://www.quora.com/How-do-you-evaluate-the-sum-of-n-2-2-n-from-n-1-to-infinity

Convergence

https://socratic.org/questions/how-do-you-test-the-series-sigma-n-2-2-n-from-n-is-0-oo-forconvergence
© 2023 James Stevenson

[^1]
[^0]: ${ }_{1}^{1}$ https://mindyourdecisions.com/blog/2023/12/04/sum-of-n-squared-over-2-to-n/
 ${ }^{2}$ Such as, "Autumn Sum" (https://josmfs.net/2020/10/24/autumn-sum/) and "Winter Sum" (https://josmfs.net/2022/01/15/winter-sum/).

[^1]: ${ }^{3}$ https://en.wikipedia.org/wiki/Arithmetico-geometric_sequence

