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Amazing Root Problem 
28 December 2023 

Jim Stevenson 

This is a challenging but imaginative problem from the 2024 

Math Calendar ([1]).   

...16842  

As before, recall that all the answers are integer days of the month.   

Solution 

The solution came to me incrementally.  First I noticed the √2 

could be pulled out: 
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And then the ¼ th root of 4: 
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And then the pattern became clear: 

S2...222...842
3

2

3
2

2

2

2
1

3
2

1
2

2

1

2
1

==  

where S is the sum 
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We have seen this sum before (in the solution to “Another Challenging Sum”
1
) or we can apply 

the usual trick of considering the power series 
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where S = S(½). 

Again we use the geometric series: 
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Taking the derivative, 
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  https://josmfs.net/2023/12/09/another-challenging-sum/ 
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Then  
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Evaluating at x = 1/2 , 
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So the answer to the problem is  

42...16842 2
==  
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