Amazing Root Problem

28 December 2023
Jim Stevenson
This is a challenging but imaginative problem from the 2024
 Math Calendar ([1]).

$$
\sqrt{2 \sqrt{4 \sqrt{8 \sqrt{16 \sqrt{\ldots}}}}}
$$

As before, recall that all the answers are integer days of the month.

Solution

The solution came to me incrementally. First I noticed the $\sqrt{ } 2$ could be pulled out:

$$
\sqrt{2}(4 \sqrt{8 \sqrt{16 \sqrt{\ldots}}})^{\frac{1}{4}}
$$

And then the $1 / 4$ th root of 4 :

$$
2^{\frac{1}{2}} 4^{\frac{1}{4}}(8 \sqrt{16 \sqrt{\ldots}})^{\frac{1}{8}}
$$

And then the pattern became clear:

$$
2^{\frac{1}{2}} 4^{\frac{1}{2^{2}}} 2^{\frac{1}{3^{3}}} \cdots=2^{\frac{1}{2}} 2^{\frac{2}{2^{2}}} 2^{\frac{3}{2^{3}}} \cdots=2^{S}
$$

where S is the sum

$$
S=\frac{1}{2^{1}}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\frac{4}{2^{4}}+\ldots+\frac{n}{2^{n}}+\ldots
$$

We have seen this sum before (in the solution to "Another Challenging Sum"') or we can apply the usual trick of considering the power series

$$
S(x)=\sum_{n=1}^{\infty} n x^{n}
$$

where $S=S(1 / 2)$.
Again we use the geometric series:

$$
G(x)=1+x+x^{2}+\ldots+x^{n}+\ldots=\frac{1}{1-x}
$$

Taking the derivative,

$$
G^{\prime}(x)=1+2 x+3 x^{2}+\ldots+n x^{n-1}+\ldots=\frac{1}{(1-x)^{2}}
$$

[^0]Then

$$
S(x)=x G^{\prime}(x)=\frac{x}{(1-x)^{2}}
$$

Evaluating at $x=1 / 2$,

$$
S=S\left(\frac{1}{2}\right)=\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=2
$$

So the answer to the problem is

$$
\sqrt{2 \sqrt{4 \sqrt{8 \sqrt{16 \sqrt{\ldots}}}}}=2^{2}=4
$$

References

[1] Rapoport, Rebecca and Dean Chung, Mathematics 2024: Your Daily epsilon of Math, American Mathematical Society, 2024. January
© 2023 James Stevenson

[^0]: 1 https://josmfs.net/2023/12/09/another-challenging-sum/

