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Elliptic Circles 
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Jim Stevenson 

Here is another UKMT Senior Challenge problem for 2017. 

The diagram shows a square PQRS with edges of length 1, and 

four arcs, each of which is a quarter of a circle. Arc TRU has centre 

P; arc VPW has centre R; arc UV has centre S; and arc WT has 

centre Q. 

What is the length of the perimeter of the shaded region? 
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Solution 

Actually, the solution is rather straight-forward.  Figure 1 shows the values given in the problem 

and those derived from the given values.  Using the fact that the arclength of an arc of a circle is the 

radius times the angle subtended by the arc in radians, we have  

Perimeter = 2 UT + 2UV 

= 2√2 π/2 + 2(√2 – 1) π/2 

= (2√2 – 1) π 

or answer B. 

  

Figure 1  Problem Solution Figure 2  Ellipse Approximation 

Comment.  Clearly the figure looks like an ellipse, so I was wondering how close an 

approximation to an ellipse it was.  Figure 2 shows the answer.  The ellipse has semimajor axis a =  

3√2/2 – 1 and semiminor axis b = √2/2.   

The two circular arcs are from circles that approximate the osculating circles giving the maximum 

and minimum radii of curvature of the ellipse.   How close is this approximation?  From Wikipedia, 
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the radius of curvature of the ellipse at the semimajor axis vertex is Ra = b
2
/a and at the semiminor 

axis vertex is Rb = a
2
/b.   

Substituting our values we get the radius of curvature at the semimajor axis vertex is 

Ra = b
2
/a = 1/(3√2 – 2) ≈ 0.446 

and the radius of the circular arc UV containing the semimajor axis vertex is 

√2 – 1 ≈ 0.414 

At the semiminor axis vertex we get the radius of curvature is 

Rb = a
2
/b = (11 – 6√2)/√2 ≈ 1.778 

and the radius of the arc UT containing the semiminor axis vertex is 

√2 ≈ 1.414 

These results agree with the ellipse in Figure 2 whose radii of curvature at each of these vertices 

are larger than those of the approximating circular arcs. 
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