Maximized Box Problem

Jim Stevenson

31 August 2023

My Solution

From Figure 1 the volume of the box is given by

$$
\mathrm{V}(x)=x(a-2 x)^{2}
$$

the area of the base by

$$
\mathrm{A}_{\mathrm{b}}=(a-2 x)^{2} .
$$

and the area of the sides by

$$
\mathrm{A}_{\mathrm{s}}=4 x(a-2 x),
$$

where $0 \leq x \leq a / 2$ (Figure 1). Note that $\mathrm{V}(0)=\mathrm{V}(a / 2)=0$ and $\mathrm{V}(\mathrm{x})>0$ for $0<x<a / 2$. Since $\mathrm{V}(\mathrm{x})$ is continuous on the closed interval [$0, a / 2$] and not identically zero, there is at least one point in the open interval $(0, a / 2)$ where it achieves its maximum. Moreover, $\mathrm{V}(x)$ being a polynomial, it is continuously differentiable and its derivative must vanish at that maximum point.

Now

$$
\begin{gathered}
0=\mathrm{dV} / \mathrm{dx}=x(a-2 x)(-2)+(a-2 x)^{2} \Leftrightarrow \\
(a-2 x)^{2}=4 x(a-2 x) \Leftrightarrow \\
\mathrm{A}_{\mathrm{b}}=\mathrm{A}_{\mathrm{s}}
\end{gathered}
$$

We could solve for x and show there is only one solution and therefore the maximum, or test the second derivative to verify that it is a maximum. Alternatively, we could realize $\mathrm{V}(x)$ describes a cubic polynomial with a zero at $x=0$ and a double zero at $x=a / 2$. Extending the range of x into negative values we see $\mathrm{V}(x)$ becomes negative and for all $x>0, \mathrm{~V}(x) \geq 0$. So $\mathrm{V}(x)$ takes the form shown in Figure 2. And therefore it has only one critical point inside the interval ($0, a / 2$), and it must be a maximum. Moreover, it is a

Figure 1 critical point $\left(\mathrm{V}^{\prime}(x)=0\right)$ iff $\mathrm{A}_{\mathrm{b}}=\mathrm{A}_{\mathrm{s}}$.

Maths Challenge Solution

The Maths Challenge solution is basically the same as mine.
Consider the diagram.

$$
\mathrm{A}_{\text {base }}=(a-2 x)^{2}=a^{2}-4 a x+4 x^{2}
$$

\therefore Volume of box,

$$
\begin{gathered}
\mathrm{V}=a^{2} x-4 a x^{2}+4 x^{2} \\
\mathrm{dV} / \mathrm{dx}=a^{2} 8 a x+12 x^{2}
\end{gathered}
$$

At turning point, $\mathrm{dV} / \mathrm{dx}=0$

$$
\begin{gathered}
\therefore a^{2}-8 a x+12 x^{2}=0 \\
(a-2 x)(a-6 x)=0 \\
\therefore x=a / 2, a / 6 .
\end{gathered}
$$

Clearly $x=a / 2$ is a trivial solution, as $\mathrm{A}_{\text {base }}=0$, so we need only consider the solution $x=a / 6$.

$$
\mathrm{d}^{2} \mathrm{~V} / \mathrm{dx}^{2}=-8 a+24 x
$$

When $x=a / 6, \mathrm{~d}^{2} \mathrm{~V} / \mathrm{dx}^{2}=-4 a<0 \Rightarrow \mathrm{~V}$ is at a maximum value.
Note that it is not sufficient to show that the area of the base equals the area of the sides when $x=$ $a / 6$, as we are attempting to prove that the volume is maximised if and only if this condition is true.

$$
\begin{gathered}
\mathrm{A}_{\text {sides }}=4 x(a-2 x) \\
(a-2 x)^{2}=4 x(a-2 x) \\
\therefore(a-2 x)^{2}-4 x(a-2 x)=0 \\
(a-2 x)((a-2 x)-4 x)=0 \\
(a-2 x)(a-6 x)=0 \\
\therefore x=a / 2, a / 6 .
\end{gathered}
$$

Solving $\mathrm{A}_{\text {base }}=\mathrm{A}_{\text {sides }}$,

We reject $x=a / 2$, as $\mathrm{A}_{\text {base }}=0$.
Hence $\mathrm{A}_{\text {base }}=\mathrm{A}_{\text {sides }}$ has a unique non-trivial solution, $x=a / 6$, which is when the volume of the box is maximised.

References

[1] Hughes, Colin, "Maximised Box", Maths Challenge, (mathschallenge.net) (May 2003) \#122 p.73. Difficulty: 4 Star. "A four-star problem: A comprehensive knowledge of school mathematics and advanced mathematical tools will be required."
© 2023 James Stevenson

