Square In A Quarter Circle

30 May 2022

Jim Stevenson

My Solution

Figure 1

Figure 2

Figure 3

First we take the perpendicular bisector of the edge of the square intersecting the quarter circle arc. Since the edge is a chord of the circle, the perpendicular bisector passes through the center of the circle (Figure 1). Since the inscribed figure is a square, this perpendicular bisector is parallel to the sides of the square and so is a perpendicular bisector of the other edge as well. Therefore the segment of the bisector in the (orange) right triangle is an altitude h of the triangle (Figure 2). From the geometric mean we get

$$
x / h=h / x \Rightarrow h^{2}=x^{2} \Rightarrow h=x .
$$

Therefore, the perpendicular bisector is of length $3 x$, which gives us a (blue) right triangle with sides $x, 3 x$, and hypotenuse 1 (Figure 3). So by the Pythagorean Theorem we have

$$
9 x^{2}+x^{2}=1 \Rightarrow x^{2}=1 / 10
$$

or

$$
\text { Area of square }=4 x^{2}=2 / 5 \text {. }
$$

Talwalkar Solution

Talwalkar's solution is similar to mine, but he used a different argument to obtain the length of the perpendicular bisector inside the orange right triangle.

Side $B C$ is a chord of circle O [Figure 4]. Construct the perpendicular bisector of $B C$. It will pass through the center O (since O is equidistant from B and C), and label its intersection with $B C$ as E and its intersection with $A D$ as F. Because $A B C D$ is a square, the perpendicular bisector of $B C$ is also the perpendicular bisector of $A D$. Triangles $A F O$ and $D F O$ are congruent by side-angle-side since $A F=$ $F D$, angles $A F O$ and $D F O$ are right angles, and $O F=O F$. Thus $A O F=D O F$, and since $A O D=90^{\circ}$, we have $A O F=D O F=45^{\circ}$. Thus $O F D$ is an isosceles right triangle with $O F=F D$.

Figure 4

Figure 5

Construct the radius $O B$ which has length 1 . Suppose half of the square's side has length equal to x, so that $B E=F D=F O=x$ and $F E=C D=2 x$ [Figure 5]. Then $O E B$ is a right triangle with legs x, $x+2 x=3 x$, and a hypotenuse equal to 1 . Thus we have:

$$
\begin{gathered}
x^{2}+(3 x)^{2}=1^{2} \\
10 x^{2}=1 \\
x^{2}=1 / 10
\end{gathered}
$$

The square's area is then:

$$
(2 x)^{2}=4 x^{2}=4(1 / 10)=4 / 10=0.4
$$

Special thanks this month to:

Robert Zarnke, Kyle, Mike Robertson, Michael Anvari, Daniel Lewis Thanks to all supporters on Patreon!

References

I thank these people who helped me prove the first step on Twitter:
@ahmed_elashraf https://twitter.com/ahmed_elashraf/status/1450213493798494211
@ScottRollison https://twitter.com/ScottRollison/status/1450251161798430728
@OkanAtalay1970 https://twitter.com/OkanAtalay1970/status/1450305206378434562

References

[1] Talwalkar, Presh, "Square in a Quarter Circle," Mind Your Decisions, 7 December 2021 (https://mindyourdecisions.com/blog/2021/12/07/square-in-a-quarter-circle/)
© 2022 James Stevenson

