Right Angles in a Square

9 April 2020

Jim Stevenson

 Quantum magazine ([1]).

Point L divides the diagonal AC of a square ABCD in the ratio 3:1, K is the midpoint of side AB. Prove that angle KLD is a right angle. (Y. Bogaturov)

My Solution

I am afraid I proceeded in a rather pedestrian manor, relying more on analytic geometry than plane geometry (Figure 1). I assumed the square was a unit square.

Drawing a line from D to K forms the green right triangle in the figure. Since K is the midpoint of the side of the square, the legs of the right triangle are $1 / 2$ and 1 . Thus the hypotenuse is $\sqrt{5 / 2}$.

Drawing a second, vertical line through L forms two blue right triangles in the figure. Since L is $1 / 4$ of the distance from the lower right vertex, the vertical line forms an isosceles right triangle with legs $1 / 4$. Therefore, the horizontal leg of the upper blue triangle is also $1 / 4$, and the blue triangles are congruent with legs $1 / 4$ and $3 / 4$. Therefore the equal hypotenuses are $\sqrt{10 / 4}$. Since

$$
(\sqrt{ } 10 / 4)^{2}+(\sqrt{ } 10 / 4)^{2}=2 \cdot 10 / 16=5 / 4=(\sqrt{ } 5 / 2)^{2}
$$

by the converse of the Pythagorean Theorem triangle KLD is a right triangle and KLD is a right angle.

Figure 1 My Solution

Quantum Solution

The Quantum solution is pure plane geometry and quite elegant.

Divide the given square into $4 \cdot 4=16$ congruent squares (Figure 2). Then points L and K turn out to be nodes of the grid obtained. The rotation of the grid through 90° about point L obviously takes triangle LMD into triangle LNK. So angle DLK is equal to the rotation angle-that is, to 90° (and, in addition, LD = LK).

References

[1] "Challenges" Quantum Magazine, Vol. 2 No. 2, National Science Teachers Assoc., Springer-Verlag, Nov-Dec 1991 p. 18 M36
© 2020 James Stevenson

Figure 2 Quantum Solution

