Moon Quarters Problem

11 July 2022
Jim Stevenson
This is a straight-forward problem from the Scottish Mathematical Council Senior Mathematics Challenge ([1]).

A circle has radius 1 cm and $A B$ is a diameter. Two circular
 arcs of equal radius are drawn with centres A and B. These arcs meet on the circle as shown. Calculate the shaded area.

There are several possible approaches and the SMC offers two examples.

My Solution

Figure 1 shows my decomposition of the circle into regions whose areas can be computed and used to obtain the desired answer. R is the radius of the large blue circle and r is the radius of the original (red) circle, where $\mathrm{r}=1 \mathrm{~cm}$. From the figure, we see that

$$
\mathrm{R}=\sqrt{ } 2 \mathrm{r}
$$

C is the area of the small red circle. M is the area of one of the quarter moons. S_{1} is the area of the yellow sector of the large blue circle. T is the area of the green

Figure 1 triangle bounded by the radii of the small red circle. S_{2} is the sector of the small red circle bounded by the radii, and L is the difference in the areas of this sector and the triangle

$$
L=S_{2}-T .
$$

So we can construct the area for M as

$$
\begin{aligned}
M & =C-2\left(S_{1}+L\right) \\
& =C-2\left(S_{1}+S_{2}-T\right) \\
& =C-2 S_{1}-2 S_{2}+2 T \\
& =\pi \mathrm{r}^{2}-\pi \mathrm{R}^{2} / 4-\pi \mathrm{r}^{2} / 2+\mathrm{r}^{2} \\
& =\pi\left(\mathrm{r}^{2}-2 \mathrm{r}^{2} / 4-\mathrm{r}^{2} / 2\right)+\mathrm{r}^{2} \\
& =\mathrm{r}^{2}
\end{aligned}
$$

So, since $r=1 \mathrm{~cm}$, the area of two quarter moons is

$$
2 M=2 \mathrm{r}^{2}=2 \mathrm{~cm}^{2}
$$

SMC Solutions

SMC provided two solutions ([2]).

Solution 1.

$$
B C^{2}=1^{2}+1^{2}=2
$$

$\angle C B A=45^{\circ}$, so $\angle C A D=90^{\circ}$. The radius of the sector $C B D$ is $B C=\sqrt{ } 2$, so the area of sector $C B D=\pi B C^{2} / 4=\pi / 2$. $C D=2$, so the area of $\triangle B C D=1 / 2 \cdot 2 \cdot 1=1$. Therefore the unshaded area is $2(\pi / 2-1)=\pi-2$. But the area of the full circle is $\pi \cdot 1^{2}=\pi$. So the shaded region is

$$
\pi-(\pi-2)=2 \mathrm{~cm}^{2}
$$

Solution 2.

Let C and D be the points shown in the diagram [Figure

Figure 2

2]. Then $A C^{2}=1^{2}+1^{2}=2$, so that the radius of the circular arc with centre A is $\sqrt{ }$. Then the shaded area is
(area of circle of radius 1) - 2 (area of the segment of a circle, radius $\sqrt{ } 2$, subtended by an angle $\pi / 2$)

$$
\begin{aligned}
& =\pi-2(\text { area of the sector of a circle, radius } \sqrt{ } 2 \text {, subtended by an angle } \pi / 2-\text { area of } \triangle A C D) \\
& =\pi-2(\text { quarter of area of the sector of circle of radius } \sqrt{ } 2-\text { area of } \triangle A C D) \\
& =\pi-2(1 / 4 \cdot 2 \pi-1 / 2 \cdot \sqrt{ } 2 \cdot \sqrt{ } 2) \\
& =\pi-2(\pi / 2-1)=2 \mathrm{~cm}^{2}
\end{aligned}
$$

References

[1] "Senior Division: Problems 1 S3" Mathematical Challenge 2011-2012, The Scottish Mathematical Council (http://www.wpr3.co.uk/MC-archive/S/S-1112-Q1.pdf)
[2] "Senior Division: Problems 1 Solutions S3" Mathematical Challenge 2011-2012, The Scottish Mathematical Council (http://www.wpr3.co.uk/MC-archive/S/S-1112-S1.pdf)

