Stimulating Sequence

13 October 2022

Jim Stevenson

This is another stimulating little problem from the 2022 Math Calendar ([1]).

$$
\begin{gathered}
a_{1}=1, a_{2}=2, \ldots, a_{n+1}=a_{n}+6 a_{n-1} \\
x=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
\end{gathered}
$$

Solve for x.
As before, recall that all the answers are integer days of the month.

Solution

Let $b_{n}=a_{n+1} / a_{n}$. Then

$$
b_{n}=\frac{a_{n+1}}{a_{n}}=\frac{a_{n}+6 a_{n-1}}{a_{n}}=1+6 \frac{a_{n-1}}{a_{n}}=1+\frac{6}{b_{n-1}}
$$

Assuming the limit exits, then $x=\lim _{n \rightarrow \infty} b_{n}$ implies

$$
\begin{gathered}
x=1+6 / x \\
x^{2}-x-6=0 \\
(x-3)(x+2)=0 \\
x=3 .
\end{gathered}
$$

References

[1] Rapoport, Rebecca and Dean Chung, Mathematics 2022: Your Daily epsilon of Math, Rock Point, Quarto Publishing Group, New York, 2022. December
© 2022 James Stevenson

